Study of some phenolic-iodine redox polymeric products by thermal analyses and mass spectrometry

2005 ◽  
Vol 82 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. A. Fahmey ◽  
M. A. Zayed ◽  
H. G. El-Shobaky
Author(s):  
Tatiyana V. Serebryanskaya ◽  
Alexander S. Lyakhov ◽  
Ludmila S. Ivashkevich ◽  
Yuri V. Grigoriev ◽  
Andreii S. Kritchenkov ◽  
...  

AbstractNovel platinum(II) and palladium(II) chlorido complexes with tetrazole derivatives 1-(2-hydroxyethyl)tetrazole (het) and 1-[tris(hydroxymethyl)methyl]tetrazole (thm), viz. cis-[Pt(het)2Cl2], trans-[Pt(het)2Cl2], trans-[Pt(thm)2Cl2], trans-[Pd(het)2Cl2], and trans-[Pd(thm)2Cl2], were synthesized. The compounds were characterized by elemental and high-resolution electrospray ionization (HRESI) mass spectrometry, high-performance liquid chromatography (HPLC), 1H, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy, thermal analyses, and Infrared (IR) spectroscopy. Molecular and crystal structures of trans-[PdL2Cl2] and trans-[PtL2Cl2] (L = het, thm) were established by single-crystal X-ray analysis. The complex cis-[Pt(het)2Cl2] was found to undergo cis–to–trans isomerization upon heating in acetonitrile solution and in the solid state. The synthesized complexes show rather high water solubility lying in the range of 2–10 mg/L.


2014 ◽  
Vol 117 (1) ◽  
pp. 463-471 ◽  
Author(s):  
Mostafa Y. Nassar ◽  
M. F. El-Shahat ◽  
S. M. Khalile ◽  
M. El-Desawy ◽  
Eman A. Mohamed

1993 ◽  
Vol 8 (5) ◽  
pp. 1137-1142 ◽  
Author(s):  
Masamichi Tsuji ◽  
Gang Mao ◽  
Takashi Yoshida ◽  
Yutaka Tamaura

A maximum Al3+-substitution has been demonstrated to be 45 mole% of (M + Al) in the brucite layer of hydrotalcites. The chemical composition of the highly substituted hydrotalcites can be typically represented by [M0.55Al0.45(OH)2] [(CO3)0.225 · 0.50H2O] where M = Mg, Ni, Zn, and Co. It showed the small lattice parameters of a0 3.05–2.98 A in the hexagonal lattice, which corroborates Al3+-substitution in the brucite layer. The simultaneous thermal analyses (TG and DTA) and mass spectrometry (MS) study have been performed. The highly Al3+-substituted hydrotalcites also showed quite different isotherms for the CO2 adsorption. These materials adsorbed CO2 gas by removing water within the interlayer and showed the selectivity for CO2 adsorption: Cu–Al ∼Zn—Al < Co—Al < Mg—Al < Ni—Al. The Mg—Al and Co—Al hydrotalcite-like compounds showed a doubled amount of CO2 by removing carbonate ions within the interlayer.


Sign in / Sign up

Export Citation Format

Share Document