high water solubility
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Haroldo C. Da Silva ◽  
Isabel S. Hernandes ◽  
Wagner B. De Almeida

The high-water solubility of flavonoid catechin makes it a promising candidate as a drug in the treatment of various diseases. The formation of Beta-CD-Catechin inclusion complex has been proposed experimentally,...


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19836-19843
Author(s):  
Yukiko Tabuchi ◽  
Takaya Sakai

This highly fixed molecular structure of this aninonic surfactant (C16-4S-5OH) in water achieves a low Krafft point and a low CMC simultaneously both of which are necessary for a modern sustainable surfactant.


Author(s):  
Tatiyana V. Serebryanskaya ◽  
Alexander S. Lyakhov ◽  
Ludmila S. Ivashkevich ◽  
Yuri V. Grigoriev ◽  
Andreii S. Kritchenkov ◽  
...  

AbstractNovel platinum(II) and palladium(II) chlorido complexes with tetrazole derivatives 1-(2-hydroxyethyl)tetrazole (het) and 1-[tris(hydroxymethyl)methyl]tetrazole (thm), viz. cis-[Pt(het)2Cl2], trans-[Pt(het)2Cl2], trans-[Pt(thm)2Cl2], trans-[Pd(het)2Cl2], and trans-[Pd(thm)2Cl2], were synthesized. The compounds were characterized by elemental and high-resolution electrospray ionization (HRESI) mass spectrometry, high-performance liquid chromatography (HPLC), 1H, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy, thermal analyses, and Infrared (IR) spectroscopy. Molecular and crystal structures of trans-[PdL2Cl2] and trans-[PtL2Cl2] (L = het, thm) were established by single-crystal X-ray analysis. The complex cis-[Pt(het)2Cl2] was found to undergo cis–to–trans isomerization upon heating in acetonitrile solution and in the solid state. The synthesized complexes show rather high water solubility lying in the range of 2–10 mg/L.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4034
Author(s):  
Kendra Sorroza-Martínez ◽  
Israel González-Méndez ◽  
Mireille Vonlanthen ◽  
Kathleen I. Moineau-Chane Ching ◽  
Anne-Marie Caminade ◽  
...  

A new class of phosphorus dendritic compounds (PDCs) having a cyclotriphosphazene (P3N3) core and decorated with six β-cyclodextrin (βCD) units, named P3N3-[O-C6H4-O-(CH2)n-βCD]6, where n = 3 or 4 was designed, and the synthesis was performed using copper (I) catalyzed alkyne-azide cycloaddition (CuAAC). To obtain the complete substitution of the P3N3, two linkers consisting of an aromatic ring and an aliphatic chain of two different lengths were assessed. We found that, with both linkers, the total modification of the periphery was achieved. The two new obtained dendritic compounds presented a considerably high water solubility (>1 g/mL). The compounds comprised in this new class of PDCs are potential drug carrier candidates, since the conjugation of the βCD units to the P3N3 core through the primary face will not only serve as surface cover but, also, provide them the faculty to encapsulate various drugs inside the βCDs cavities.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3272
Author(s):  
Nimisha Bhattarai ◽  
Mi Chen ◽  
Rocío L. Pérez ◽  
Sudhir Ravula ◽  
Robert M. Strongin ◽  
...  

Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate (1) relative hydrophobicity via octanol–water partition coefficients, (2) cytotoxicity, and (3) cellular uptake in order to evaluate possible structure–activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS.


Author(s):  
Wiktoria Tomal ◽  
Joanna Ortyl

Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery systems. The use of photopolymerization processes requires an appropriate initiating system which, in biomedical applications, must meet additional criteria: high water solubility, non-toxicity to cells, and compatibility with visible low-power light sources. This article is a literature review on those compounds that act as photoinitiators of photopolymerization processes in biomedical applications. The division of initiators according to the method of photoinitiation was described and the related mechanisms were discussed. Examples from each group of photoinitiators are presented, and their benefits, limitations and applications are outlined.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1073 ◽  
Author(s):  
Wiktoria Tomal ◽  
Joanna Ortyl

Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery systems. The use of photopolymerization processes requires an appropriate initiating system that, in biomedical applications, must meet additional criteria such as high water solubility, non-toxicity to cells, and compatibility with visible low-power light sources. This article is a literature review on those compounds that act as photoinitiators of photopolymerization processes in biomedical applications. The division of initiators according to the method of photoinitiation was described and the related mechanisms were discussed. Examples from each group of photoinitiators are presented, and their benefits, limitations, and applications are outlined.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1466
Author(s):  
Ruojie Zhang ◽  
Zipei Zhang ◽  
Ruyi Li ◽  
Yunbing Tan ◽  
Shanshan Lv ◽  
...  

There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There is, however, potential for them to also raise the bioavailability of undesirable substances found in these products, such as pesticides. In this research, we studied the impact of excipient nanoemulsions on the bioaccessibility of pesticide-treated tomatoes. We hypothesized that the propensity for nanoemulsions to raise pesticide bioaccessibility would depend on the polarity of the pesticide molecules. Bendiocarb, parathion, and chlorpyrifos were therefore selected because they have Log P values of 1.7, 3.8, and 5.3, respectively. Nanoemulsions with different oil contents (0%, 4%, and 8%) were fabricated to study their impact on pesticide uptake. In the absence of oil, the bioaccessibility increased with increasing pesticide polarity (decreasing Log P): bendiocarb (92.9%) > parathion (16.4%) > chlorpyrifos (2.8%). Bendiocarb bioaccessibility did not depend on the oil content of the nanoemulsions, which was attributed to its relatively high water-solubility. Conversely, the bioaccessibility of the more hydrophobic pesticides (parathion and chlorpyrifos) increased with increasing oil content. For instance, for chlorpyrifos, the bioaccessibility was 2.8%, 47.0%, and 70.7% at 0%, 4%, and 8% oil content, respectively. Our findings have repercussions for the utilization of nanoemulsions as excipient foods in products that may have high levels of undesirable non-polar substances, such as pesticides.


Sign in / Sign up

Export Citation Format

Share Document