scholarly journals Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops

2016 ◽  
Vol 125 (3) ◽  
pp. 1199-1204 ◽  
Author(s):  
A. Bazan ◽  
P. Nowicki ◽  
P. Półrolniczak ◽  
R. Pietrzak
2017 ◽  
Vol 21 (2) ◽  
pp. 1067-1081 ◽  
Author(s):  
Dejan Radic ◽  
Miroslav Stanojevic ◽  
Marko Obradovic ◽  
Aleksandar Jovovic

High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000?C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215?C), maximum of exothermic processes (400-450?C), beginning of the second intense mass change phase (635-700?C), and maximum endothermic processes (800-815?C) were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 137-145
Author(s):  
M. V. Borysenko ◽  
◽  
Ya. M. Chubenko ◽  
I. I. Voitko ◽  
T. S. Chorna ◽  
...  

In this work, we investigated granular and powder activated carbons (AC) – initial and waste with adsorbed impurities after purification of technical glycerin and subsequent washing with water. The aim of this work was to quantify the adsorbed impurities in the spent AC using thermal analysis (TA) and to work out the conditions for thermal regeneration of AC. TA of AC samples was carried out in an atmosphere of helium and air; the specific surface area of AC was measured by the method of low-temperature desorption of argon (SAr). It was established by the TA method that water is released in the temperature range of 20 – 170 °C, and glycerin – 170 – 400 °C. Spent AC contains up to 22.8 wt. % H2O and up to 44.6 wt. % C3H5(OH)3. Based on these data, it was proposed to regenerate spent coal by heating at 400 °C in air. In the case of a granular AC sample, the regeneration proceeds completely, while for a powder AC sample, the specific surface area with respect to argon is restored only by 22 %, from the initial 2170 m2/g. The adsorption isotherms of methylene blue (MB) of the initial samples are located higher than for the spent ones, since in the spent ones part of the surface is occupied by adsorbed glycerin. The SMB values calculated from the adsorption of methylene blue in the spent AC samples are strongly overestimated in comparison with SAr. Probably, MB displaces glycerin from the surface or interacts with it to form complexes.


Sign in / Sign up

Export Citation Format

Share Document