Surface
Latest Publications


TOTAL DOCUMENTS

18
(FIVE YEARS 18)

H-INDEX

0
(FIVE YEARS 0)

Published By National Academy Of Sciences Of Ukraine (Co. LTD Ukrinformnauka)

2617-5975, 2617-5975

Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 100-136
Author(s):  
T. V. Krupska ◽  
◽  
V. M. Gun'ko ◽  
I. S. Protsak ◽  
I. I. Gerashchenko ◽  
...  

The formation of a composite system based on equal amounts of hydrophobic, porous polymethylsiloxane and hydrophilic nanosilicon A-300 was studied. It is shown that during the formation of a composite system the specific surface of the material is significantly reduced, which is due to the close contact between hydrophobic and hydrophilic particles. When water is added to the composite system, in the process of homogenization under conditions of dosed mechanical loading, the effect of nanocoagulation is manifested – the formation of nanosized particles of hydrated silica inside the polymethylsiloxane matrix, recorded on TEM microphotographs. When measuring the value of the interfacial energy of PMS and PMS/A-300 composite by low-temperature 1H NMR spectroscopy, it was found that the effect of nanocoagulation is manifested in a decrease (compared to the original PMS) energy of water interaction with the surface of the composite obtained under small mechanical conditions. its growth when using high mechanical loads. In the process, the binding of water in heterogeneous systems containing PMS, pyrogenic nanosilica (A-300), water and surfactants – decamethoxine (DMT) was studied. Composite systems were created using metered mechanical loads. It is shown that when filling the interparticle gaps of PMS by the method of hydrosealing, the interphase energy of water in the interparticle gaps of hydrophobic PMS with the same hydration is twice the interfacial energy of water in hydrophilic silica A-300. This is due to the smaller linear dimensions of the interparticle gaps in PMS compared to A-300. In the composite system, A-300/PMS/DMT/H2O there are non-additive growth of binding energy of water, which is probably due to the formation, under the influence of mechanical stress in the presence of water, microheterogeneous areas consisting mainly of hydrophobic and hydrophilic components (microcoagulation). Thus, with the help of mechanical loads, you can control the adsorption properties of composite systems and create new materials with unique adsorption properties.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 179-192
Author(s):  
V. M. Bogatyrov ◽  
◽  
M. V. Borysenko ◽  
M. V. Galaburda ◽  
O. I. Oranska ◽  
...  

The aim of the work was to synthesize nanocomposites based on pyrogenic silica and zinc phosphate by a simple method without using a large amount of solvent and to study the characteristics and properties of the obtained materials. The dual systems of zinc phosphate/pyrogenic silica with the different ratio of components were synthesized via mechanical grinding in a porcelain drum ball mill of fumed silica (Orysyl A-380), zinc acetate (Zn(CH3COO)2·2H2O) and phosphoric acid with distilled water, followed by air-drying in an oven at 125 °C (2 h) and calcination in a muffle oven at 450 °C for 2 h. The zinc phosphate content was 0.1, 0.2, and 0.3 mmol per 1 g of SiO2. The control sample (ZP-K) was synthesized by thermal treatment of the precipitate, formed after mixing on a magnetic stirrer an aqueous solution of zinc acetate with the addition dropwise of phosphoric acid, without the use of SiO2. X-ray diffraction studies of the nanocomposites confirmed the formation of the crystalline phase of Zn3(PO4)2·4H2O (orthorhombic modification) both in the silica-containing and control ZP-K samples after air drying at 125 °C, while heat treatment at 450 °C leaded to the formation of the anhydrous monoclinic Zn3(PO4)2 phase. The content of the zinc phosphate in the dual composites was 0.1, 0.2, and 0.3 mmol per 1 g of SiO2. The IR spectra of the nanocomposites indicated the presence of absorption bands in the range of 3760-3600 cm-1, which were attributed to the unequal structural ‒OH groups of silicon and phosphorus atoms. It was found that the presence of zinc phosphate on the SiO2 surface does not cause the chemical interaction with silica during heat treatment of composites in air even at 900-1000 °C. It was shown that the ability of Zn3(PO4)2/SiO2 composites to adsorb water vapor decreases with increasing amount of modifying compound. The effect of the obtained phosphorus-containing nanocomposite on the thermal stability of an alkyd polymer matrix was considered.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 20-35
Author(s):  
О. V. Filonenko ◽  
◽  
E. M. Demianenko ◽  
V. V. Lobanov ◽  
◽  
...  

Quantum chemical modeling of orthophosphoric acid adsorption sites on the hydrated surface of anatase was performed by the method of density functional theory (exchange-correlation functional PBE0, basis set 6-31 G(d,p)). The influence of the aqueous medium was taken into account within the framework of the continual solvent model. The work uses a cluster approach. The anatase surface is simulated by a neutral Ti(OH)4(H2O)2 cluster. The results of analysis of the geometry and energy characteristics of all the calculated complexes show that the highest interaction energy is inherent to the intermolecular complex of orthophosphoric acid and hydrated surface of anatase, where the oxygen atom of the phosphoryl group (О=Р≡) forms a hydrogen bond with a hydrogen atom of the coordinated water molecule of Ti(OH)4(H2O)2 cluster and two hydrogen atoms of the hydroxyl groups of the orthophosphoric acid molecule form two hydrogen bonds with two oxygen atoms of the titanol groups. The formation energy effect of this complex is -134.0 kJ/mol. The formation energy effect of the complex with separated charges by the proton transfer from the molecule H3PO4 to the Ti(OH)4(H2O)2 cluster with the formation of dihydrogen phosphate anion and the protonated form of the titanol group (º) is -131.1 kJ/mol, so indicating less thermodynamic probability of such intermolecular interaction. The smallest thermodynamic probability (-123.9 kJ/mol) of complexation between orthophosphoric acid and hydrated anatase surface where a water molecule moves from the coordination sphere of the titanium atom. The calculation results indicate a possible adsorption of the H3PO4 molecule in an aqueous solution on the hydrated anatase surface. Taking into account the effect of the solvent within the polarization continuum insignificantly changes the adsorption energy, which is -44.5 kJ/mol; for vacuum conditions this value is -49.0 kJ/mol.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 3-19
Author(s):  
O. Yu. Semchuk ◽  
◽  
O. O. Havryliuk ◽  
A. A. Biliuk ◽  
◽  
...  

In recent years, interest in studying the optical properties of metallic nanostructures has grown. This interest is primarily related to the possibility of practical application of such nanostructures in quantum optical computers, micro- and nanosensors. These applications are based on the fundamental optical effect of surface plasmon excitation. The consequence of this phenomenon is surface plasmon resonance (SPR) - an increase in the cross section of energy absorption by a metal nanoparticle as the frequency of incident light (laser radiation) approaches the SPR frequency of the nanoparticle. Plasmon structures are used to improve the efficiency of thin-film SC. In such structures, metal nanoparticles can primarily act as additional scattering elements for the long-wavelength component of sunlight illuminating SC. As a collective phenomenon, SPR can be described using kinetic approaches, ie using the Boltzmann kinetic equation for the conduction electrons of metal nanoparticles. In this work, the theory of SPR based on the kinetic equation for the conduction electrons of nanoparticles is constructed. to the well-known results derived from the Drude-Sommerfeld theory. Second, the kinetic method makes it possible to study metal nanoparticles with sizes larger or ptical conductivity tensor for spheroidal metal nanoparticles. It is shown that the effect of nanoparticle asymmetry on the ratio of the components of the optical conductivity tensor differs not only smaller than the average electron free path length. The developed theory is used to calculate the oquantitatively but also qualitatively in high-frequency and low-frequency surface scattering. It was found that in metal nanoparticles in a dielectric matrix, under SPR conditions, the full width of the SPR line in a spherical metal nanoparticle depends on both the radius of the particle and the frequency of the electromagnetic (laser) radiation exciting this SPR. It is shown that oscillations of the SPR line width with a change in the dielectric constant of the medium in which they are located can be observed in metal nanoparticles. The magnitude of these oscillations is greater the smaller the size of the nanoparticle and increases significantly with increase. As the radius of the spherical nanoparticle increases, the width of the SPR line decreases significantly and prevails around a certain constant value in media with a higher value of dielectric constant.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 193-230
Author(s):  
А. R. Zheleznyak ◽  
◽  
О. М. Bakalinska ◽  
А. V. Brichka ◽  
G. O. Kalenyuk ◽  
...  

The prevalence of tin compounds, economic affordability and non-toxicity determine its wide range of applications. Modern scientific literature on the properties, methods of preparation and application of tin nanooxide is analyzes in review. Its main characteristics and structural features are described. The ability of tin cations to be in two oxidation states, the ease of reduction of Sn+4 to Sn+2 and reverse oxidation, determines the redox properties of the SnO2 surface. In addition to stable oxides Sn4+ and Sn2,+ the existence of a homologous series of Snn+1O2n metastable compounds is assumed. It is proved that four-coordinated Sn+2 cations on the SnO2 surface can coexist only with oxygen vacancies in the immediate environment. Such cationic sites have the properties of strong Lewis acids and are highly reactive. Computer simulation of the SnO2 crystal surface allows us to propose a number of catalytic activity of SnO2 surfaces: (110) < (001) < (100) < (101). Preparation methods and synthesis parameters (nature and type of precursor, stabilizing agent and solvent, duration and temperature of the reaction, pH of the reaction mixture, etc.) determine the physicochemical properties of nanoparticles (shape, size, morphology and degree of crystallinity). The main (sol-gel, precipitation and coprecipitation, CVD, spray pyrolysis, hydrothermal, “green”) and less common (detonation, electric discharge) methods of nano-SnO2 obtaining are analyzed in the work. A variety of methods of synthesis and conditions makes it possible to obtain SnO2 nanoparticles with desired properties, which determine the activity of tin oxide in redox reactions, namely: nanosize and morphology of particles with prevalence of the most reactive faces - (100) і (101). Among the methods that do not require complex hardware design, one can dwell on the methods of sol-gel, "green" and coprecipitation. Tin oxide is traditionally used as an abrasive for polishing metal, glass and ceramic products. The transition to nanosized particles allows this material to reversibly absorb and release oxygen, which has determined its use in the design of gas-sensitive and biosensors, the creation of solar cells, fuel cells, lithium-ion batteries, oxidation catalysts, transparent and photoconductors. The multivalence and the presence of oxygen vacancies on the surface of tin oxide nanoparticles, the ease and speed of penetration into the cell membrane give nano-SnO2 properties of medicinal preparations, which makes it possible to use it in biomedical technologies for the treatment of diseases associated with oxidative stress lesions. The size, concentration of nanoparticles and modification of their surface are the key factors of influence, which usually intensify the antimicrobial, antibacterial, antitumor and antioxidant activity of the material.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 263-288
Author(s):  
O. D. Zolotarenko ◽  
◽  
O. P. Rudakova ◽  
M. T. Kartel ◽  
H. O. Kaleniuk ◽  
...  

The regularities of the formation of nanostructures during the evaporation of graphite by the electric ARC – method are studied. Described physicochemical processes in the synthesis reactor . At plasma temperatures taking into account the behavior of particles in electromagnetic fields with extreme temperature and pressure grants. A sequence of organization of matter in the process of forming a structure according to nano-dimensional characteristics is proposed. The self-organization of systems during electric arc evaporation of graphite or graphite-containing electrodes has been studied. The mechanisms of formation of soluble (fullerenes and fullerene-like structures) and insoluble (nanocomposites, CNTs, graphenes) carbon nanostructures are considered. The processes occurring in the electric arc synthesis reactor are analyzed: the process of distribution of charged particles in an electric arc at different times; processes taking place at the anode; the mechanism of carbon vapor formation during graphite evaporation; processes in the gas phase and on the walls of the reactor under the conditions of an electric arc discharge; model of the reactor space zones; formation of carbon nanostructures in the gas phase and on the inner surface of the reactor. use of doped electrodes and metal inserts (sleeves) as catalysts for the synthesis of carbon nanostructures. The sequence of processes in the formation of spherical carbon molecules is studied, and the processes and structural transformations are considered. In the research work, the products (fullerenes and fullerene-like structures, nanocomposites, VNT, graphenes) of electric arc synthesis are presented, and modern methods of analysis are used for their fixation and identification.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 169-178
Author(s):  
G. Bazaliy ◽  
◽  
N. Oliinyk ◽  
G. Ilnytska ◽  
◽  
...  

Development of methods for controlling the change in the functional cover and the energy composition of the surface of detonation synthesis diamond nanopowders is necessary to create stable suspensions and materials from them. The aim of this work is to study changes in the electrokinetic and electrophysical characteristics of the powder as a result of the modification of detonation synthesis diamond nanopowders using a liquid-phase thermochemical treatment. Diamond nanopowders of grades ASUD-75 - ASUD-99 with different sp2-hybridization carbon content, manufactured at the V.I. Bakul National Academy of Sciences of Ukraine from the product of detonation synthesis of diamond from the company "ALIT" (Zhytomyr) investigated. Diamond nanopowders of ASUD-90 grade after their modification by means of liquid-phase thermochemical treatment using: a melt of alkalis, a mixture of nitric and sulfuric acids, a mixture of chromic and sulfuric acids were investigated by electrophoresis using a device "Dzeta-potential-analizer" company "Mikromeritiks". Electrokinetic characteristics of diamond nanopowders: the magnitude and sign of the electrokinetic potential, electrophoretic mobility are determined. The methods were used to study the physicochemical characteristics of nanopowders: electrical resistivity, carbon content of sp2-hybridization, mass fraction of impurities in the form of an incombustible residue, and specific surface area. In this work, it was established by electrophoresis that the value of the electrokinetic potential and electrophoretic mobility of the powder decrease by 2-10 times with a decrease in the mass fraction of sp2-hybridization carbon from 23.6 to 0 wt%. Using the ASUD-90 nanopowder as an example, it is shown that the modification of the nanopowder by the liquid-phase method using thermochemical treatment with mixtures of oxidants leads to a decrease in the values ​​of electrophoretic mobility by 1.1-7.5 times and electrokinetic potential by 1.1-7.3 times. It was found by dielectric measurement that the tangent of the dielectric loss angle of diamond nanopowders of grades ASUD-90 - ASUD-99 is in the range 0.3046 - 0.3146. Modification of the ASUD-90 grade nanopowder using a liquid-phase thermochemical treatment leads to a change in the interval of the dielectric loss tangent, namely 0.2450-0.3249. According to the degree of increase in the ratio of the dielectric loss tangent from 0% humidity to 100% humidity, the methods for modifying nanopowders can be arranged as follows: modifying using a melt of alkalis (ASUD-90-1 sample, S = 12.8%) <mixture of chromic and sulfuric acids (sample ASUD-90-3, S = 13.8%) <mixture of nitric and sulfuric acids (sample ASUD-90-2, S = 20.8 %).


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 231-250
Author(s):  
А. M. Grinko ◽  
◽  
А. V. Brichka ◽  
О. М. Bakalinska ◽  
М. Т. Каrtel ◽  
...  

This review is analyzed the state of modern literature on the nanoceria based materials application as components for solid oxide fuel cells. The principle of operation of fuel cells, their classification and the difference in the constructions of fuel cells are described. The unique redox properties of nanosized cerium oxide make this material promising for application as components for solid oxide fuel cells (SOFC). Because of high ionic conductivity, high coefficient of thermal expansion and low activation energy at relatively low temperatures, cerium-containing materials are widely used as a solid electrolyte. On the surface of nanosized CeO2 there many surface defects (which is determined by the concentration of oxygen vacancies) that lead to the electronic conductivity increases even at temperatures (300 - 700 °C). The concentration of surface defects can be increased by doping the surface of nanoceria by divalent and trivalent cations. The ionic and electrical properties of the obtained nanocomposites dependent from synthesis methods, ionic radii and concentration of doping cations. It is explained the effect of the transition in the size of cerium oxide particles in the nanoscale region on the concentration of surface defects and defects in the sample structure. Particular attention is paid to the effect of doping nanosized CeO2 by transition metal cations and lanthanides on the characteristics of the obtained material, namely, on the increase of concentration of surface defects due to the increase of oxygen vacancies. It is established that nanosized cerium oxide is used for the development and implementation of the main components of SOFC: electrolyte, anode and cathode. Advantages of using solid electrolytes based on nanosized cerium oxide over the classical electrolytes are listed. It was shown that doping of cerium oxide by double and triple cations lead to increase the ionic conductivity and reduces the activation energy and has a positive effect on its characteristics as a SOFC electrolyte. Composites, based on nanoscaled cerium oxide, are actively developed and studied for use as electrodes of solid oxide fuel cells. Cerium-containing anodes are resistant to the deposition of carbon and fuel impurities, increase the catalytic activity of solid oxide fuel cells, and compatible with other components. Nanosized cerium oxide particles are sprayed onto the cathode to prevent the cathode from interacting with the electrolyte. The prospects for the use of cerium-containing materials for the conversion of chemical energy of fuel into electrical energy are analyzed.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 36-52
Author(s):  
L. M. Ushakova ◽  
◽  
E. M. Demianenko ◽  
M. I. Terets ◽  
V. V. Lobanov ◽  
...  

The aim of the work is to study interaction of N-acetylneuraminic acid (NANA) with the surface of ultrafine silica (UFS) with the participation of glucose and sucrose in aqueous solution at the supramolecular level by density functional theory method (exchange-correlation functional B3LYP, basis set of 6-31G (d, p). The adsorption of N-acetylneuraminic acid, as well as individual carbohydrates (glucose and sucrose) on the hydrated surface of UFS in aqueous solution, was considered as a process of replacement of water molecules on the surface of silica by adsorbate molecules. This work considers two schemes of carbohydrate molecule influence on adsorption of N-acetylneuraminic acid. According to the first scheme the interaction of the NANA molecule occurs with the silica-monosaccharide complex, according to the second scheme, the silica cluster interacts with the NANA-monosaccharide complex, where silica binds to the complex through the carbohydrate molecule. The analysis of the calculated geometric and energy characteristics show that adsorption on the surface of silica, with hydration taken into account, is thermodynamically probable for the sucrose. The glucose molecule has a positive value (+9.8 and +2.7 kJ / mol) is an unfavorable process in terms of thermodynamics regardless of the hydrating water cluster size. The N-acetylneuraminic acid molecule has a value of -1.3 kJ / mol for the reaction with five water molecules and +0.9 kJ / mol with eight water molecules. It was found that the presence of sucrose on the silica surface in the aqueous solution weakens the hydration energy (i.e. it is easier to replace the cluster of water with the N-acetylneuraminic acid molecule from the surface of the modified adsorbent), which in turn promotes NANA adsorption on the silica surface. Therefore, scheme 1 is thermodynamically more likely than scheme 2. This indicates that there is a mutual influence of substances in a mixture of NANA with carbohydrates on the interaction with silica in comparison with the interaction of substances with silica alone.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 327-336
Author(s):  
L. V. Ivanov ◽  
◽  
E. V. Shcherbak ◽  
N. T. Kartel ◽  
◽  
...  

Based on the pharmacokinetics of nitazole, proprietary oral administration of the rabbit analyzes various aspects of its use as auxiliary substances in the preparation of dosage forms with controlled absorption of starch, carboxymethyl starch, dialdehyde starch, sodium alginate and chitosan. Our analysis of pharmacokinetic curves revealed a correlation between the presence and magnitude of the negative charge in the polymer of starch derivatives and an increase in the bioavailability of nitazole, the absorption rate estimated by tmax and from the equations describing the curves in the framework of the single-particle absorption model. It can be assumed that the change in the bioavailability of nitazole in the presence of starch derivatives is associated with the ion-ion or ion-dipole interaction of the positively charged imine group of nitazole and negatively charged groups of starch derivatives. Obviously, in the mechanism of absorption of nitazole, the limiting stage is the stage of dissolution of nitazole in the stomach.Since the absorption of nitazole may also depend on the microviscosity of the membranes of the cells of the walls of the stomach, the effect of the above polysaccharides on the microviscosity of the membranes of red blood cells as model cells has been studied. However, the work revealed a noticeable effect of only chitosan on the microviscosity of erythrocyte membranes, in which there was some immobilization of the conformational mobility of the lipid bilayer of the cell membranes upon binding of the oppositely charged chitosan to the surface of the erythrocyte membranes. The remaining negatively charged polysaccharides did not significantly affect the microviscosity of the membranes, apparently due to the processes of electrostatic repulsion from red blood cell cells. The totality of the data obtained has expanded our knowledge about the mechanisms of the possible effect of high molecular weight polysaccharides on the bioavailability of various drugs when creating drugs with controlled absorption.


Sign in / Sign up

Export Citation Format

Share Document