Effects of hibernation on multicatalytic proteinase complex in thirteen-lined ground squirrels, Spermophilus tridecemlineatus

2005 ◽  
Vol 271 (1-2) ◽  
pp. 205-213 ◽  
Author(s):  
Ashley K. Woods ◽  
Kenneth B. Storey
1989 ◽  
Vol 257 (1) ◽  
pp. 265-269 ◽  
Author(s):  
B J Wagner ◽  
J W Margolis

Component polypeptides of both the bovine lens and pituitary multicatalytic proteinase complexes demonstrate different immunoreactivities with a polyclonal antiserum raised against the purified pituitary enzyme. Four (Mr 24000, 26000, 34000 and 38000) of eight bands that have been resolved by SDS/polyacrylamide-gel electrophoresis are stained in immunoblot experiments. Monospecific antibodies obtained from this antiserum by affinity purification from the 38000- and 34000-Mr bands of the lens enzyme bound equally well to either band, but showed little or no binding to the 26000- and 24000-Mr bands upon immunoblotting. Antibody affinity-purified from the 24000-Mr band showed comparable binding to the 24000-, 34000- or 38000-Mr band. One explanation of these results is that the 24000-Mr polypeptide is derived from the higher-Mr polypeptide(s) and has lost some of the common immunodeterminants.


1993 ◽  
Vol 47 (4-6) ◽  
pp. 306-313 ◽  
Author(s):  
Sherwin Wilk ◽  
Maria E. Figueiredo-Pereira

2010 ◽  
Vol 299 (6) ◽  
pp. R1478-R1488 ◽  
Author(s):  
Marshall Hampton ◽  
Bethany T. Nelson ◽  
Matthew T. Andrews

Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels ( Spermophilus tridecemlineatus ). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system.


Sign in / Sign up

Export Citation Format

Share Document