spermophilus tridecemlineatus
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 0)

H-INDEX

21
(FIVE YEARS 0)

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Bryan M. H. Keng ◽  
Oliver Y. W. Chan ◽  
Sean S. J. Heng ◽  
Maurice H. T. Ling

The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However, studies had demonstrated that genes assumed to be stably expressed in a species are not necessarily stably expressed in other organisms. This study aims to evaluate the likelihood of genus-specific reference genes for liver using comparable microarray datasets from Spermophilus lateralis and Spermophilus tridecemlineatus. The coefficient of variance (CV) of each probe was calculated and there were 178 probes common between the lowest 10% CV of both datasets (). All 3 lists were analysed by NormFinder. Our results suggest that the most invariant probe for S. tridecemlineatus was 02n12, while that for S. lateralis was 24j21. However, our results showed that Probes 02n12 and 24j21 are ranked 8644 and 926 in terms of invariancy for S. lateralis and S. tridecemlineatus respectively. This suggests the lack of common liver-specific reference probes for both S. lateralis and S. tridecemlineatus. Given that S. lateralis and S. tridecemlineatus are closely related species and the datasets are comparable, our results do not support the presence of genus-specific reference genes.


Gene ◽  
2012 ◽  
Vol 500 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Roy N. Platt II ◽  
David A. Ray

2010 ◽  
Vol 299 (6) ◽  
pp. R1478-R1488 ◽  
Author(s):  
Marshall Hampton ◽  
Bethany T. Nelson ◽  
Matthew T. Andrews

Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels ( Spermophilus tridecemlineatus ). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system.


2009 ◽  
Vol 296 (2) ◽  
pp. R383-R393 ◽  
Author(s):  
Matthew T. Andrews ◽  
Kevin P. Russeth ◽  
Lester R. Drewes ◽  
Pierre-Gilles Henry

Hibernating mammals use reduced metabolism, hypothermia, and stored fat to survive up to 5 or 6 mo without feeding. We found serum levels of the fat-derived ketone, d-β-hydroxybutyrate (BHB), are highest during deep torpor and exist in a reciprocal relationship with glucose throughout the hibernation season in the thirteen-lined ground squirrel ( Spermophilus tridecemlineatus). Ketone transporter monocarboxylic acid transporter 1 (MCT1) is upregulated at the blood-brain barrier, as animals enter hibernation. Uptake and metabolism of 13C-labeled BHB and glucose were measured by high-resolution NMR in both brain and heart at several different body temperatures ranging from 7 to 38°C. We show that BHB and glucose enter the heart and brain under conditions of depressed body temperature and heart rate but that their utilization as a fuel is highly selective. During arousal from torpor, glucose enters the brain over a wide range of body temperatures, but metabolism is minimal, as only low levels of labeled metabolites are detected. This is in contrast to BHB, which not only enters the brain but is also metabolized via the tricarboxylic acid (TCA) cycle. A similar situation is seen in the heart as both glucose and BHB are transported into the organ, but only 13C from BHB enters the TCA cycle. This finding suggests that fuel selection is controlled at the level of individual metabolic pathways and that seasonally induced adaptive mechanisms give rise to the strategic utilization of BHB during hibernation.


Sign in / Sign up

Export Citation Format

Share Document