Rational Distribution of Surface Cooling Intensity for a Round Continuously-Cast Billet in Secondary Cooling Zone

Metallurgist ◽  
2021 ◽  
Vol 64 (11-12) ◽  
pp. 1315-1321
Author(s):  
A. B. Biryukov ◽  
A. A. Ivanova
2019 ◽  
Vol 62 (1) ◽  
pp. 57-61 ◽  
Author(s):  
N. A. Krayushkin ◽  
I. A. Pribytkov ◽  
K. S. Shatokhin

The article presents investigation results of the effect of inhomogeneity of boundary conditions on the intensity of metal cooling in the process of continuous casting of cylindrical billets from corrosionresistant steels. It is assumed that the boundary conditions are nonuniform along the billet perimeter. In the longitudinal direction, the cooling intensity is assumed to be constant within the cooled sector of the billet. During the research it was believed that there are flows of thermal energy between the cooling sectors. A comparative analysis of temperature gradients and resulting thermal stresses in the solidified billet at different cooling intensities realized in the secondary cooling zone was carried out The values of thermal stresses are compared with the maximum permissible for each grade of steel in order to find those cooling conditions in which the thermal stresses do not exceed the permissible values. Based on the results obtained, conclusions are drawn about the effect of cooling intensity on the occurrence of external and internal defects in the resulting cylindrical continuous cast billets. The authors have also made the conclusions about the effect of inhomogeneity of the boundary conditions on the formation of temperature fields in a solidified cylindrical continuously cast billet. The results of the conducted studies are presented in a graphic form and their detailed analysis is carried out. To calculate the temperature fields in the solidifying billet, a specially developed mathematical model was used, based on the equation of nonstationary heat conductivity. For the calculation of thermal stresses, known mathematical formulas have been used that allow calculating the values of thermal stresses arising between cooling zones in the solidifying billet during the continuous casting of steel. The obtained data are of high practical importance, since they can be used to develop rational cooling regimes, in which excess permissible thermal stresses will not be observed. This, as a consequence, will reduce the number of internal and external defects arising in the solidifying continuously cast billet.


Metallurgist ◽  
2021 ◽  
Author(s):  
D. A. Pumpyanskiy ◽  
S. V. Tyutyunik ◽  
E. A. Kolokolov ◽  
A. A. Mescheryachenko ◽  
I. S. Murzin ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


Metallurgist ◽  
1979 ◽  
Vol 23 (12) ◽  
pp. 847-849
Author(s):  
M. Z. Levin ◽  
N. G. Pirozhenko ◽  
D. A. Dyudkin ◽  
A. M. Kondratyuk ◽  
V. N. Bordyugov

1998 ◽  
Vol 31 (23) ◽  
pp. 31-36
Author(s):  
F.R. Camisani-Calzolari ◽  
I.K. Craig ◽  
P.C. Pistorius

Sign in / Sign up

Export Citation Format

Share Document