cooling intensity
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 27)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 6 (1(62)) ◽  
pp. 27-35
Author(s):  
Nikolai Kobasko

Objects of investigations are water solutions of polyalkylene glycol (PAG) which are used as the quenchants in the heat-treating industry. They are tested by standard cylindrical probe made of Inconel 600 material. The main and not solved yet is the problem of transition from data achieved for standard probe to data suitable for any form and size of real steel part. It opens possibility to make predictable calculations. Taken this into account, it has been investigated water solutions of PAG of different concentration. It is underlined that cooling intensity of quenchant can be evaluated by Kondratiev number Kn. The mentioned number Kn varies within 0≤Kn≤1 when generalized Biot Biv number varies within 0≤Biv≤∞. As a main achievement of investigation is established correlation between standard Kn number and Kn number of real steel part. In many cases, when film boiling is absent, the established correlation is a linear function. It allows optimizing quenching processes: obtain high surface compressive residual stresses, save alloy elements and improve environment condition. All of this is achieved by tolerating chemical composition of steel with size and form of quenched object as it is proposed by UA Patent No. 114174. Also, the number Kn allows interruption of quench process when surface compressive residual stresses are at their maximum value that essentially improves the quality of steel components. Moreover, interrupted cooling prevents quench crack formation, decreases distortion of quenched steel parts. The results of investigations can be used by engineers in the heat-treating industry and scientists for further research.


2021 ◽  
Vol 13 (22) ◽  
pp. 4601
Author(s):  
Liang Yan ◽  
Wenxiao Jia ◽  
Shuqing Zhao

Urban green spaces have many vital ecosystem services such as air cleaning, noise reduction, and carbon sequestration. Amid these great benefits from urban green spaces, the cooling effects via shading and evapotranspiration can mitigate the urban heat island effect. The impact of urban green spaces (UGSs) on the urban thermal environment in Beijing was quantified as a case study of metacities using four metrics: Land surface temperature (LST), cooling intensity, cooling extent, and cooling lapse. Three hundred and sixteen urban green spaces were extracted within the 4th ring road of Beijing from SPOT 6 satellite imagery and retrieved LST from Landsat 8 remote sensing data. The results showed that the cooling intensity of green spaces was generally more prominent in the areas with denser human activities and higher LST in this metacity. Vegetation density is always the dominant driver for the cooling effect indicated by all of the metrics. Furthermore, the results showed that those dispersive green spaces smaller than 9 ha, which are closely linked to the health and well-being of citizens, can possess about 6 °C of cooling effect variability, suggesting a great potential of managing the layout of small UGSs. In addition, the water nearby could be introduced to couple with the green and blue space for the promotion of cooling and enhancement of thermal comfort for tourists and residents. As the severe urban heating threatens human health and well-being in metacities, our findings may provide solutions for the mitigation of both the urban heat island and global climate warming of the UGS area customized cooling service.


2021 ◽  
Vol 29 (3) ◽  
pp. 318-336
Author(s):  
Yuncai Wang ◽  
Junda Huang ◽  
Chundi Chen ◽  
Jiake Shen ◽  
Shuo Sheng

The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012053
Author(s):  
I A Molotova ◽  
A R Zabirov ◽  
V V Yagov ◽  
M M Vinogradov ◽  
N N Antonov ◽  
...  

Abstract The work is aimed at studying the effect of galvanic nickel coating of a stainless steel cylinder on the quenching. In order to compare the results, the polished stainless steel cylinder was used as a sample. In addition, the influence of the formation of an oxide layer on the cooling process was studied. The experiments were carried out in water and ethanol with different subcoolings. The oxidized porous nickel coating led to increasing of the transition temperature from stable film boiling to intensive boiling regime. It was especially noticeable for cooling in water at high subcooling due to the higher cooling intensity caused by vapour layer thinning.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1232
Author(s):  
Jan Kominek ◽  
Tomas Luks ◽  
Michal Pohanka ◽  
Jong-Yeon Hwang

This paper deals with secondary cooling in a continuous caster. In particular, it deals with cooling inhomogeneity caused by spray arrangement and segmented rolls used for leading the strand. The cooling section is placed under the mold. Segmented rolls are supported by bearings in several places across the strand. Sprayed water can flow in the gaps between rolls where the bearing pocket is located. The main question that was experimentally studied is how this geometry with segmented rolls can influence homogeneity of cooling. Two experimental approaches developed for this study were applied, and both used full-scale geometrical configuration. The first one was a cold test where water flow and water distribution were observed using a transparent board with the studied surface structures (rollers and bearing pockets) and four spraying nozzles. The second one was a cooling test using a heated steel plate with rolls and bearing pockets. Cooling homogeneity was studied based on the temperature distribution on the rear side of the sample, which was recorded using an infrared camera. Homogeneity of cooling distribution was experimentally studied for three levels of cooling intensity that are used in typical cooling sections in plants. The hot tests showed that the bearing pockets do not provide significant cooling inhomogeneity despite the fact that a large amount of water flows through the gap between the rollers (which has been observed in cold tests).


2021 ◽  
Vol 118 (5) ◽  
pp. 508
Author(s):  
You-lin Jin ◽  
Song-lin Du ◽  
Chao-jie Zhang

In this paper, the formation mechanism of wheel rim crack and control technique was investigated. Feature of wheel rim crack and aggregated attachments on the inner wall of nozzle were examined through scanning electron microscope and energy dispersive spectrometer. Metal rheological test of round billet rolling was conducted to investigate the corresponding location of large inclusions in the round billet and in the wheel. It was found that the rim crack of wheels during service is caused by large inclusions that originated from the aggregated inclusions on the inner wall of the nozzle. According to Murakami’s modelling, the critical size of the inclusions that initiate cracks relates to the depth from the tread. The critical sizes of the inclusions for cracks initiation at 10 mm, 14 mm, 16 mm and 20 mm below the tread are about 0.1 mm, 0.2 mm, 0.5 mm and 1.5 mm, respectively. Process optimization was made with combination of a series methods. Dispersed annular venting stopper was adopted to block the aggregation and attachment of inclusions on the inner wall of nozzle. Current and frequency of electromagnetic stirring in mold were increased to restrain the impact depth of molten steel flow and inclusions. Cooling intensity of the secondary cooling was decreased to reduce the probability of inclusions captured at the solidification front. After optimization, the number of large inclusions was greatly reduced by more than 80%, and the number of inclusions larger than 1 mm is greatly reduced from 35% to 8%. The risk of wheel rim cracks occurrence could be reduced greatly.


2020 ◽  
Vol 39 (1) ◽  
pp. 633-644
Author(s):  
Meng He ◽  
Jianing Qi ◽  
Zhentai Zheng ◽  
Fen Shi ◽  
Yunfeng Lei

AbstractNickel-based alloys play an important role in the field of high-temperature alloys, which are widely used in nuclear reactors, aerospace and components of turbomachinery. However, the high susceptibility of welding hot crack is a main shortcoming to nickel-based alloys. One of the methods that reduce hot cracking susceptibility is by adjusting element constitution of weld metal and another method is by reducing transient stress. This article used finite element method to study the effect of cooling source on transient stress of the nickel-based alloy weld joint. The selection of appropriate cooling technique can decrease the peak of the transient von Mises stress and make the tensile stress turn into compressive stress, which is beneficial to reduce hot cracking susceptibility. The peak of the transient von Mises stress decreases as the cooling intensity increases from 0 to 15,000 W/m2 K, but increases if the cooling intensity is ineffective. When the distance between cooling source and heat source reaches 35 mm, the weld can get larger region of compressive stress. The peak of the transient von Mises stress decreases with increasing radius of cooling source and reaches minimum value at 12 mm. Combined cooling is more effective in reducing the peak of this stress than the conventional single trailing cooling source.


Sign in / Sign up

Export Citation Format

Share Document