Mathematical Modeling and Experimental Investigations of a Main Rotor Made from Layered Composite Materials

2020 ◽  
Vol 56 (1) ◽  
pp. 103-110
Author(s):  
D. N. Solovyev ◽  
S. S. Dadunashvili ◽  
A. Mironov ◽  
P. Doronkin ◽  
D. Mironovs
2016 ◽  
Vol 2016 (3) ◽  
pp. 129-136 ◽  
Author(s):  
Павел Черданцев ◽  
Pavel Cherdantsev ◽  
Андрей Марков ◽  
Andrey Markov ◽  
Софья Катаева ◽  
...  

Composite materials are widely used in mechanical engineering, but at edge cutting machining, in particular, during milling these materials a number of peculiarities arise which must be taken into account at the definition of cutting modes and design-geometrical parameters of cutters. Besides, new composite materials machining does not allow using effectively the recommendations developed earlier. In such a way, to solve such a problem it is necessary to carry out experimental investigations on the analysis of the influence of milling mode characteristics and design-geometrical of a tool upon values of roughness of a surface processed and tool wear. As a cutter for investigations there were taken hardmetal endmilling cutters of TC-8 (tungstencobalt) type, the experimental samples – pipes made of composite material with oblique longi-tudinal-transverse fiber winding (OLTFW). As varied parameters were adopted cutting modes: cutting speed V, m/min, feed S, mm/tooth and milling depth t, mm. During the experiments were controlled the following parameters: tool wear Δ, mkm, roughness of the surface Ra, mkm and a depth of a faulty layer h, mkm. To carry out the experiments there was offered an original design of an assembly milling cutter which allows defining in an experimental way optimum geo-metrical parameters of a tools to achieve output milling parameters specified. On the basis of experiments data there are obtained dependences allowing the estimate of parameter modes influence upon the period of cutter duration at the same time a temperature is affected mostly by a milling depth and a feed on a tooth affects the wear of an end flank.


2012 ◽  
Vol 583 ◽  
pp. 167-170
Author(s):  
Sheng Gang Zhou ◽  
Pei Xian Zhu

This paper changed the matrix structure model of traditional electrode materials from the the composition of the internal structure of the matrix, used solid-solid compound method of hot pressing diffusion welding for sandwich type structure Ti-Al layered composite materials, The Ti/IrO2-Ta2O5 were got by typical oxygen evolution model coating ingredient(mole ratio of Ir to Ta was 7:3). Microstructure of the layered composite materials was studied by scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS), and then the current distribution performance as the anode material for nickel electrowinning in NiSO4-H2SO4 system was characterized by electric analysis module of ANSYS program . The results showed that, The findings indicate that the interface formation of Ti-Al layered composite materials was a reaction-diffusion process. In the technology conditions of this subject, the phase of interface was Al3Ti. Compared with the traditional DSA (Dimensionally Stable Anode) titanium anode, the Ti-Al layered composite anode showed a more uniform current distribution performance.


1993 ◽  
Vol 115 (4B) ◽  
pp. 468-473 ◽  
Author(s):  
S. L.-Y. Woo ◽  
G. A. Johnson ◽  
B. A. Smith

Ligaments and tendons serve a variety of important functions in maintaining the structure of the human body. Although abundant literature exists describing experimental investigations of these tissues, mathematical modeling of ligaments and tendons also contributes significantly to understanding their behavior. This paper presents a survey of developments in mathematical modeling of ligaments and tendons over the past 20 years. Mathematical descriptions of ligaments and tendons are identified as either elastic or viscoelastic, and are discussed in chronological order. Elastic models assume that ligaments and tendons do not display time dependent behavior and thus, they focus on describing the nonlinear aspects of their mechanical response. On the other hand, viscoelastic models incorporate time dependent effects into their mathematical description. In particular, two viscoelastic models are discussed in detail; quasi-linear viscoelasticity (QLV), which has been widely used in the past 20 years, and the recently proposed single integral finite strain (SIFS) model.


Sign in / Sign up

Export Citation Format

Share Document