fiber winding
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
pp. 108128652110587
Author(s):  
Murtadha J. Al-Chlaihawi ◽  
Heiko Topol ◽  
Hasan Demirkoparan ◽  
José Merodio

The influence of swelling on prismatic and bending bifurcation modes of inflated thin-walled cylinders under axial loading is examined. The bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure, and swelling is provided. We consider orthotropic materials with two preferred directions which are mechanically equivalent and symmetrically disposed. The mechanical behavior of the matrix is described by a swellable isotropic model. The isotropic material is augmented with two functions that are equal, each one of them accounting for the existence of a unidirectional reinforcement. Two reinforcing models that depend only on the stretch in the fiber direction are considered: the so-called standard reinforcing model and an exponential one. The analysis of bifurcation modes for these models under the conditions at hand may establish the connection with modeling of the normal and diseased aorta in arterial wall tissue. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of prismatic and bending bifurcations are investigated. It is shown that for membranes without fibers, prismatic bifurcation is not feasible. On the other hand, bending bifurcation is more likely to occur for swollen cylinders. However, for a particular model of fiber-reinforced membranes, the standard model, there exists a domain of deformation values together with material constant values that may trigger prismatic bifurcation. The exponential model does not allow prismatic bifurcations. Both models allow bending bifurcation and may or may not trigger it depending on the deformation together with material parameters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Ji ◽  
Lingjie He ◽  
Liangqin Jiang ◽  
Hongguo Ren ◽  
Shuai Ni ◽  
...  

To obtain the seismic behavior of glass fiber–reinforced polymer (GFRP) tube reactive powder concrete composite columns with encased steel (GRS), a total of 17 full-scale GRS columns were designed in this study. The parametric studies were conducted to explore the influence of factors such as the diameter of GFRP tube (D), thickness of GFRP tube (t), number of fiber winding layers (n), fiber winding angle (θ), axial compression ratio (λ), compressive strength of reactive powder concrete (fc), the area of encased steel (As), and strength of encased steel (fsy) on the seismic behavior of the composite columns. The finite element models of this kind of columns were established by ABAQUS finite element software, and the seismic behavior analysis for GRS composite columns was carried out. The results show that all the specimens exhibit good ductility and strong deformation ability. The stiffness degradation of specimens significantly slows down with the increase of D, fsy, and λ. The energy dissipation capacity of specimens can be improved by increasing D and λ, while the increase of As and fsy leads to the decrease of the energy dissipation capacity. By observing the failure mode of such composite columns, local bulging occurs in the foot area of the columns. Based on the statistical analysis of the calculated results, the restoring force models for GRS composite columns are proposed, which agree well with the simulated results. The restoring force models can provide reference for the elastic-plastic seismic response analysis of this kind of composite columns.


2021 ◽  
Author(s):  
Stefan Neunkirchen ◽  
Ralf Schledjewski
Keyword(s):  

Fibers ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 39
Author(s):  
Norman Hack ◽  
Mohammad Bahar ◽  
Christian Hühne ◽  
William Lopez ◽  
Stefan Gantner ◽  
...  

The research described in this paper is dedicated to the use of continuous fibers as reinforcement for additive manufacturing, particularly using Shotcrete. Composites and in particular fiber reinforced polymers (FRP) are increasingly present in concrete reinforcement. Their corrosion resistance, high tensile strength, low weight, and high flexibility offer an interesting alternative to conventional steel reinforcement, especially with respect to their use in Concrete 3D Printing. This paper presents an initial development of a dynamic robot-based manufacturing process for FRP concrete reinforcement as an innovative way to increase shape freedom and efficiency in concrete construction. The focus here is on prefabricated fiber reinforcement, which is concreted in a subsequent additive process to produce load-bearing components. After the presentation of the fabrication concept for the integration of FRP reinforcement and the state of the art, a requirements analysis regarding the mechanical bonding behavior in concrete is carried out. This is followed by a description of the development of a dynamic fiber winding process and its integration into an automated production system for individualized fiber reinforcement. Next, initial tests for the automated application of concrete by means of Shotcrete 3D Printing are carried out. In addition, an outlook describes further technical development steps and provides an outline of advanced manufacturing concepts for additive concrete manufacturing with integrated fiber reinforcement.


2021 ◽  
Vol 36 (2) ◽  
pp. 193-204
Author(s):  
Ö. Özbek ◽  
Ö. Y. Bozkurt ◽  
A. Erkliğ

Abstract The current study deals with the effect of basalt fiber hybridization on the compressive properties of composite pipes reinforced with glass fiber and carbon fiber. Hybrid and non-hybrid fiber reinforced pipes (FRPs) were fabricated through wet filament winding technique. Intraply fiber winding structure in which different fiber types were simultaneously wound at the layer was employed for the hybridization. The FRP samples wound by different fiber winding angles (± (40°), ± (55°), ± (70°)) were prepared in order to gain a better insight on the influence of basalt intraply fiber hybridization. The compression properties of FRP samples were experimentally determined by quasi-static compression tests using external parallel-plates for both the axial and radial directions. The non-hybrid carbon FRP pipes showed the maximum axial compression strength in parallel to the highest strength and lowest ductility of carbon fibers, while the minimum axial compression strength was obtained for the non-hybrid pipes reinforced with basalt fibers that, in comparison, exhibit much less strength and higher ductility. The pipes submitted to the axial compression tests predominantly failed due to the development of cracks and buckling along the fiber direction. While the inclusion of basalt fiber reduced the axial compression behavior of the non-hybrid carbon and glass FRP samples, it improved that behavior in the radial compression tests. Delamination was determined as the major failure mode for the damaged FRPs under radial compression. It is found that the incorporation of basalt fiber provides improvements in radial compression properties as opposed to axial compression properties and in the same manner the increment in fiber winding angle makes a positive contribution to radial compression properties.


2021 ◽  
Author(s):  
Wei-Han Tan ◽  
Chao-Ying Zhao ◽  
Yi-Chao Meng ◽  
Qi-Zhi Guo
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 497
Author(s):  
Jaroslav Mlýnek ◽  
Seyed Saeid Rahimian Koloor ◽  
Tomáš Martinec ◽  
Michal Petrů

The extraordinary features of fibrous composites enable advanced industries to design composite structures with superior performance compared to traditional structures. Composite frame structures have been designed frequently as components of mechanical systems to resist lateral and gravity loads. The manufacturing of high-quality composite frames depends primarily on the accurate fiber winding on frames with different pro-files and curved shapes. The optimal fiber winding process on a nonbearing composite frame with a circular cross-section is described in previous works by the same authors. As an extension to that, this study focuses on the manufacturing of straight-line composite frames with different profile radii at multiple locations. Such production procedure allows continuous winding of fibers gradually on individual parts of the frame and generally with different angles of fiber winding. The winding procedure is performed using fiber-processing head and industrial robot. The procedure for calculating the distance of the winding plane of fibers on the frame from the guide-line of the fiber-processing head is targeted. This distance depends on the required angle of fiber winding, the radius of the frame, and the geometric parameters of the fiber-processing head. The coordination of the speed of winding the fibers on the frame and the speed of the passage of the frame through the winding head is also considered. Determining the correct distance of winding the fibers from the corresponding guide-line of fiber-processing head and right coordination of the winding speed and the speed of passage of the frame through the fiber-processing head ensure compliance of the required angles of fiber windings on the frame and homogeneity of winding fibers, which are the two of the most important prerequisites for producing a quality composite frame. The derived theory is well verified on a practical experimental example.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2080
Author(s):  
Marcin Abramski ◽  
Piotr Korzeniowski ◽  
Krzysztof Klempka

The paper presents experimental studies on axially compressed columns made of concrete-filled glass fiber reinforced polymer (GFRP) tubes. The infill concrete was C30/37 according to Eurocode 2. The investigated composite pipes were characterized by different angles of fiber winding in relation to the longitudinal axis of the element: 20, 55 and 85 degrees. Columns of two lengths, 0.4 m and 2.0 m, were studied. The internal diameter and wall thickness of all the pipes were identical and amounted to 200 mm and 6 mm, respectively. The mean values of two mechanical properties, elasticity modulus and compression strength, were determined. These properties were determined for longitudinal compression and for circumferential tension. The graphs of longitudinal and peripheral deformations of polymer shells as a function of load level are presented both for empty tubes and for concrete-filled ones. The results of long-term investigations of three identically made 0.4 m high concrete-filled GFRP tubes are also presented.


2020 ◽  
Vol 26 (5) ◽  
pp. 28-37
Author(s):  
A.P. Dzyuba ◽  
◽  
V.N. Sirenko ◽  
D.V. Klymenko ◽  
L.D. Levytina ◽  
...  

We considered the problem of weight optimization of parameters of multi-layer composite shell produced by the method of continuous cross-winding under axisymmetric loading. Shell layers are placed symmetrically relative to the middle surface. The angles of the reinforcing material winding variable along the meridian and the thickness of layers are taken as the variation parameters. We propose an algorithm of the automated determination of the elastic constants of a composite material variable along the shell meridian anisotropy. The connection of the composite structure with the technological process of shell manufacturing by winding with a reinforcing tape under different angles to the axis of rotation is taken into account. The values of four elastic constants obtained as a result of experimental testing of witness specimens of the composite material along and orthogonal to the reinforcement are used as output. The equations of state of the moment theory of shells of the variable along the meridian orthotropy and wall thickness are obtained as a boundary value problem for a system of ordinary differential equations with variable coefficients. The use of the necessary optimality conditions in the form of the principle maximum of Pontryagin in the presence of arbitrary phrasal restraints made it possible to reduce the emerging multiparameter problem to a sequence of extreme problems of a significantly smaller dimension. This approach greatly simplifies taking into account the conditions of strength reliability, and technological and structural requirements of real design, and the process of finding an optimal project as a whole. The results of the optimization of a two-layer fiberglass shell of rotation are presented in the form of a change in the distribution of layers’ thickness and the glass fiber winding angle. Materials of research can be used to reduce the material consumption of structural elements in rocket and space technology and other branches.


Sign in / Sign up

Export Citation Format

Share Document