Free Vibration of Grid-Stiffened Composite Cylindrical Shell Reinforced with Carbon Nanotubes

2020 ◽  
Vol 56 (4) ◽  
pp. 505-522
Author(s):  
R. Azarafza ◽  
Al. Davar ◽  
M. S. Fayez ◽  
J. E. Jam
2020 ◽  
Vol 3 (1) ◽  
pp. 22-36
Author(s):  
Masoud Rahmani ◽  
Amin Moslemi Petrudi

In this paper, the vibrations and dynamic response of an orthotropic thin-walled composite cylindrical shell with epoxy graphite layers reinforced with carbon nanotubes under heat shock and heat field loading are investigated. the carbon nanotubes were uniformly distributed along the thickness of the composite layer. The problem is that at first there is a temperature change due to the thermal field in the cylinder and the cylinder is coincident with the thermal field, then the surface temperature of the cylinder rises abruptly. Partial derivative equations of motion are coupled to heat equations. The differential quadrature method (DQM) is used to solve the equations. In this study, the effects of length, temperature, thickness and radius parameters on the natural frequencies and mid-layer displacement are investigated. The results show that increasing the outside temperature reduces the natural frequency and increases the displacement of the system. Radial displacement results were also compared with previous studies and were found to be in good agreement with previous literature. Increasing the percentage of carbon nanotubes also increased the natural frequency of the system and decreased the mobility of the middle layer.


2021 ◽  
Author(s):  
A. N. Shankar ◽  
S. M. Murali Krishna ◽  
Rohinikumar Chebolu ◽  
Ajay Singholi ◽  
Rasmeet Singh ◽  
...  

2019 ◽  
Vol 17 (03) ◽  
pp. 1850133 ◽  
Author(s):  
T. Truong-Thi ◽  
T. Vo-Duy ◽  
V. Ho-Huu ◽  
T. Nguyen-Thoi

This study presents an extension of the cell-based smoothed discrete shear gap method (CS-DSG3) using three-node triangular elements for the static and free vibration analyses of carbon nanotube reinforced composite (CNTRC) plates. The single-walled carbon nanotubes (SWCNTs) are assumed to be uniformly distributed (UD) and functionally graded (FG) distributed along the thickness direction. The material properties of carbon nanotube-reinforced composite plates are estimated according to the rule of mixture. The governing equations are developed based on the first-order shear deformation plate theory (FSDT). In the CS-DSG3, each triangular element will be divided into three sub-triangles, and in each sub-triangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains on these three sub-triangles. Effects of several parameters, such as the different distribution of carbon nanotubes (CNTs), nanotube volume fraction, boundary condition and width-to-thickness ratio of plates are investigated. In addition, the effect of various orientation angles of CNTs is also examined in detail. The accuracy and reliability of the proposed method are verified by comparing its numerical solutions with those of other available results in the literature.


Sign in / Sign up

Export Citation Format

Share Document