Combined Use of Contact Layer and Finite-Element Methods to Predict the Long-Term Strength of Adhesive Joints in Normal Separation

Author(s):  
A. S. Chepurnenko ◽  
S. V. Litvinov ◽  
S. B. Yazyev
2013 ◽  
Vol 785-786 ◽  
pp. 1236-1239
Author(s):  
Yu Qi Wang ◽  
Xiao Cong He ◽  
Bao Ying Xing ◽  
Sen Zhou

The adhesive-bond of paster single lap joints was put forward firstly. The strength of 5052Al-Al adhesive-bond of single lap joints (SLJ) and 5052Al-Al paster adhesive-bond of SLJ were investigated using finite element method (FEM). Results from the simulation showed that the paster adhesive-bond of SLJ was stronger than the adhesive-bond of SJL. So it can use the paster adhesive joints to improve the strength of adhesive joints.


Author(s):  
M. Gharehdaghi ◽  
A. Fakher ◽  
A. Cheshomi

Abstract. Land subsidence in Tehran Plain, Iran, for the period of 2003–2017 was measured using an InSAR time series investigation of surface displacements. In the presented study, land subsidence in the southwest of Tehran is characterized using InSAR data and numerical modelling, and the trend is predicted through future years. Over extraction of groundwater is the most common reason for the land subsidence which may cause devastating consequences for structures and infrastructures such as demolition of agricultural lands, damage from a differential settlement, flooding, or ground fractures. The environmental and economic impacts of land subsidence emphasize the importance of modelling and prediction of the trend of it in order to conduct crisis management plans to prevent its deleterious effects. In this study, land subsidence caused by the withdrawal of groundwater is modelled using finite element method software Plaxis 2D. Then, the model was verified using InSAR data. The results were in good agreement with the measurement results. The calibrated model was used to predict the land subsidence in future years. It could predict future subsidence for any assumed rate of water depletion.


1972 ◽  
Vol 3 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Armand F. Lewis ◽  
Raymond A. Kinmonth ◽  
Robert P. Kreahling

2009 ◽  
Vol 6 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Sean M. Chinen ◽  
Matthew T. Siniawski

The purpose of this paper is to provide an overview of SnAgCu solder joint fatigue in BGA/CSP/flip-chip applications and the concern of long-term reliability. The most common mode of failure is ductile fracture due to creep strain. Several methods of predicting the overall life of the solder joint are the Coffin-Manson approach, a constitutive fatigue law, and a damage based model using FEM (finite element methods). The effects of underfill and its processes as well as design considerations that will increase reliability will also be discussed.


2020 ◽  
Author(s):  
Stefano Ottolenghi ◽  
Josefin Ahlkrona

<p><span>Ice sheet-ocean interaction is important to properly understand phenomena such as ice sheet melting and ocean circulation. While the long term goal of this project is to fully couple the ice and ocean in one single numerical framework, we here start by modelling the ocean. We use the full non-hydrostatic equations in order to accurately model the complex ocean dynamics near the ice sheets. As numerical method, we employ finite element methods due to their capability of representing a complex fjord geometry and locally refining the mesh in the areas which require more careful handling, and its strong mathematical foundation. This will allow to overcome classical problems such as representing a moving ice shelf in a discretized setting. We here present an example of modeled fjord circulation obtained simulating the model with the FEniCS computing platform. <br></span></p>


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


2009 ◽  
Vol 58 (6) ◽  
pp. 525-532 ◽  
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

1983 ◽  
Author(s):  
W. HABASHI ◽  
M. HAFEZ ◽  
P. KOTIUGA

Sign in / Sign up

Export Citation Format

Share Document