Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.)

2004 ◽  
Vol 14 (4) ◽  
pp. 349-361 ◽  
Author(s):  
Charlene P. Wight ◽  
Louise S. O'Donoughue ◽  
James Chong ◽  
Nicholas A. Tinker ◽  
Stephen J. Molnar
Author(s):  
E.R. Davoyan ◽  
◽  
L.A. Bespalova ◽  
R.O. Davoyan ◽  
E.V. Agaeva ◽  
...  

The article presents the results of the characterization of 277 lines of common wheat developed in the National Center of Grain named after P.P. Lukyanenko by the presence of molecular markers linked to leaf rust resistance genes Lr9, Lr19, Lr24, Lr37, Lr26. Lines with Lr9 and Lr19 were not identified. We detected 52 lines carrying Lr24; 80 lines with Lr26; 141 lines with Lr37. Lines carrying a combination of leaf rust resistance genes were selected using molecular markers. The presence of a combination of Lr37 + Lr26 was established in 31 lines. The combination of Lr24 + Lr26 was detected in 12 lines. Line 125-15 Ms 2 carries a combination of Lr37 + Lr24. A pyramid of three genes was found in the line 144-15 Ms 2. Currently, the selected lines are widely involved in the breeding process.


2020 ◽  
Vol 75 (2) ◽  
pp. 37-45
Author(s):  
SYLWIA SOWA

The best source of crown rust resistance genes (Pc) in genus Avena is a wild hexaploid A. sterilis L. In this study, accessions of A. sterilis gathered from European and North American gene banks, originated from 21 countries were evaluated at the seedling stage for crown rust reaction using the host–pathogen test and two Puccinia coronata f. sp. avenae isolates. Of the 45 oat accessions analyzed, 12 were resistant to one crown rust race (3.2). Resistance to both pathotypes used in the study was observed in two of the accessions, first of which was collected in Libya (AVE 2532) and second in Portugal (CN 26036). Further research is required to evaluate the genetic background of the discovered resistance, however, obtained results provide a valuable first step in the identification of new promising crown rust resistance sources.


2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

2019 ◽  
Author(s):  
Geleta Dugassa Barka ◽  
Eveline Teixeira Caixeta ◽  
Sávio Siqueira Ferreira ◽  
Laércio Zambolim

AbstractPhysiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Sign in / Sign up

Export Citation Format

Share Document