Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations

2010 ◽  
Vol 27 (4) ◽  
pp. 479-490 ◽  
Author(s):  
H. B. Li ◽  
M. X. Zhou
2017 ◽  
Vol 226 ◽  
pp. 322-326
Author(s):  
Lipi Parikh ◽  
M.T. Mmbaga ◽  
G. Meru ◽  
G. Zhang ◽  
L. Mackasmiel ◽  
...  

2006 ◽  
Vol 96 (7) ◽  
pp. 784-789 ◽  
Author(s):  
S. S. Liang ◽  
K. Suenaga ◽  
Z. H. He ◽  
Z. L. Wang ◽  
H. Y. Liu ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major disease to wheat (Triticum aestivum) worldwide. Use of adult-plant resistance (APR) is an effective method to develop wheat cultivars with durable resistance to powdery mildew. In the present study, 432 molecular markers were used to map quantitative trait loci (QTL) for APR to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi × Oligoculm. Field trials were conducted in Beijing and Anyang, China during 2003-2004 and 2004-2005 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of B. graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated four times, and the maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation in May 2004 and 2005. The heritability of resistance to powdery mildew for MDS in 2 years and two locations ranged from 0.82 to 0.93, while the heritability for area under the disease progress curve was between 0.84 and 0.91. With the method of composite interval mapping, four QTL for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.7 to 26.6% of the phenotypic variance. Three QTL on chromosomes 1AS, 2BL, and 7DS were derived from the female, Fukuho-komugi, while the one on chromosome 4BL was from the male, Oligoculm. The QTL on chromosome 1AS showed high genetic effect on powdery mildew resistance, accounting for 19.5 to 26.6% of phenotypic variance across two environments. The QTL on 7DS associated with the locus Lr34/Yr18, flanked by microsatellite Xgwm295.1 and Ltn (leaf tip necrosis). These results will benefit for improving powdery mildew resistance in wheat breeding programs.


2005 ◽  
Vol 95 (5) ◽  
pp. 556-565 ◽  
Author(s):  
L. Perchepied ◽  
M. Bardin ◽  
C. Dogimont ◽  
M. Pitrat

Partial resistance to downy mildew (Pseudoperonospora cubensis) and complete resistance to powdery mildew (Podosphaera xanthii races 1, 2, 3, and 5 and Golovinomyces cichoracearum race 1) were studied using a recombinant inbred line population between ‘PI 124112’ (resistant to both diseases) and ‘Védrantais’ (susceptible line). A genetic map of melon was constructed to tag these resistances with DNA markers. Natural and artificial inoculations of Pseudoperonospora cubensis were performed and replicated in several locations. One major quantitative trait loci (QTL), pcXII.1, was consistently detected among the locations and explained between 12 to 38% of the phenotypic variation for Pseudoperonospora cubensis resistance. Eight other Pseudoperonospora cubensis resistance QTL were identified. Artificial inoculations were performed with several strains of four races of Podosphaera xanthii and one race of G. cichoracearum. Two independent major genes, PmV.1 and PmXII.1, were identified and shown to be involved in the simple resistance to powdery mildew. Three digenic epistatic interactions involving four loci were detected for two races of Podosphaera xanthii and one race of G. cichoracearum. Co-localization between PmV.1, resistance genes, and resistance genes homologues was observed. Linkage between the major resistance QTL to Pseudoperonospora cubensis, pcXII.1, and one of the two resistance genes to powdery mildew, PmXII.1, was demonstrated.


2008 ◽  
Vol 156 (11-12) ◽  
pp. 691-697 ◽  
Author(s):  
Liu Longzhou ◽  
Yuan Xiaojun ◽  
Cai Run ◽  
Pan Junsong ◽  
He Huanle ◽  
...  

2009 ◽  
Vol 89 (5) ◽  
pp. 837-844 ◽  
Author(s):  
L Zhao ◽  
K Zhang ◽  
B Liu ◽  
J Tian

In order to understand the genetic basis of starch pasting viscosity characteristics (the RVA profile, which is produced by the Rapid Visco Analyser) of wheat grain samples, a doubled haploid (DH) population (Huapei 3 × Yumai 57; Yumai 57 is superior to Huapei 3 for RVA profile parameters) and a linkage map consisting of 324 marker loci were used to search QTL. This program was based on mixed linear models and allowed simultaneous mapping of additive effect QTL, epistatic QTL, and QTL × environment interactions (QE). Mapping analysis produced a total of 35 QTL for 6 RVA profile parameters with a single QTL explaining 0.91-21.34% of phenotypic variations. The 35 QTL were distributed on 15 chromosomes. The QBd-4A had the most significant additive effect, accounting for 21.34% of the phenotypic variance. Two QTL clusters for RVA profile parameters were located on chromosomes 2A and 4A, respectively. The information obtained in this study should be useful for manipulating the QTL for RVA profiles parameters by molecular assisted selection (MAS) in wheat breeding programs.Key words: Doubled haploid population, paste viscosity characteristics, rapid visco analyser, quantitative trait loci, wheat (Triticum aestivum L.)


Sign in / Sign up

Export Citation Format

Share Document