Cryptanalysis of a plaintext-related chaotic RGB image encryption scheme using total plain image characteristics

2017 ◽  
Vol 77 (15) ◽  
pp. 20103-20127 ◽  
Author(s):  
Haiju Fan ◽  
Ming Li ◽  
Dong Liu ◽  
Kang An
2015 ◽  
Vol 109 ◽  
pp. 119-131 ◽  
Author(s):  
M.A. Murillo-Escobar ◽  
C. Cruz-Hernández ◽  
F. Abundiz-Pérez ◽  
R.M. López-Gutiérrez ◽  
O.R. Acosta Del Campo

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1581
Author(s):  
Haiju Fan ◽  
Chenjiu Zhang ◽  
Heng Lu ◽  
Ming Li ◽  
Yanfang Liu

Recently, a new chaotic image encryption technique was proposed based on multiple discrete dynamic maps. The authors claim that the scheme can provide excellent privacy for traditional digital images. However, in order to minimize the computational cost, the encryption scheme adopts one-round encryption and a traditional permutation–diffusion structure. Through cryptanalysis, there is no strong correlation between the key and the plain image, which leads to the collapse of cryptosystem. Based on this, two methods of chosen-plaintext attacks are proposed in this paper. The two methods require 3 pairs and 258 pairs of plain and cipher images, respectively, to break the original encryption system. The simulation results show the effectiveness of the two schemes.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Xing-Yuan Wang ◽  
Xue-Mei Bao

In this paper, we propose a novel selective image encryption scheme using a one-way coupled map lattice (CML) consisting of logistic maps and a selector constructed by two variants of a cyclic shift register (VCSR). The initial conditions and the coupling constant of CML in our scheme are influenced by all the contents of the plain image. Moreover, the selector is closely related to the nonencrypted part of the plain image. In addition, we select only a portion of image data to encrypt via a wheel-switch scheme governed by the selector. Users can select an appropriate proportion to encrypt the plain image for their different demands of security and efficiency. Experimental results and theoretical analysis show that the cryptosystem is effective and can resist various typical attacks.


2016 ◽  
Vol 67 (2) ◽  
pp. 78-86 ◽  
Author(s):  
Hongye Niu ◽  
Changjun Zhou ◽  
Bin Wang ◽  
Xuedong Zheng ◽  
Shihua Zhou

Abstract Encryption is an effective way to protect the image information from attacking by intruders in the transmission applications through the Internet. This study presents an image encryption scheme on the basics of the formal model of DNA computing-splicing system and hyper-chaotic system, which utilizes the instinct properties of hyper-chaotic system and splicing model while programming the method. In our proposed algorithm, the quaternary coding is used to split the plain image into four sub-sections so that we can’t get the cipher image without any one sub-section. This new method can be used to change the plain image information drastically. The experimental results and security analysis show that our method not only has a good security but also increases the resistance to common attacks such as exhaustive attacks, statistical attacks and differential attacks.


Author(s):  
Kirtee Panwar ◽  
Ravindra Kumar Purwar ◽  
Garima Srivastava

This paper proposes an image encryption technique which is fast and secure. The encryption scheme is designed for secure transmission of video surveillance data (keyframes) over insecure network. The image encryption technique employs 1D Sine–Sine system with better chaotic properties than its seed map and faster than higher-dimensional chaotic systems. Further, design of encryption scheme is based on two permutation rounds, which employs pixel swapping operation and diffusion operation which is simple and provides required security against plaintext, differential and various other attacks. Three separate chaotic sequences are generated using 1D Sine–Sine system which enhances the key space of the encryption scheme. Secret keys are updated dynamically with SHA-256 hash value obtained from plain image. Hash values of plain image are efficiently used without loss of any hash value information. This makes the encryption scheme plaintext sensitive and secure against plaintext attacks. Performance and security aspects of encryption scheme is analyzed both quantitatively using predefined security metrics and qualitatively by scrutinizing the internal working of encryption scheme. Computational complexity of encrypting a plain image of size [Formula: see text] is [Formula: see text] and is suitable for encrypting keyframes of video for secure surveillance applications.


Author(s):  
Alaa Abdulsalm Alarood ◽  
Eesa Alsolami ◽  
Mahmoud Ahmad Al-Khasawneh ◽  
Nedal Ababneh ◽  
Wael Elmedany

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Haiju Fan ◽  
Ming Li

A novel chaos-based image encryption scheme has been proposed recently. In this scheme, redundancies of the Fridrich’s structure were reduced significantly via a new circular inter-intra-pixels bit-level permutation strategy. However, we proved that the original encryption scheme is vulnerable to the known/chosen-plaintext attacks. Both the permutation and diffusion phases have been improved to enhance the security of the original scheme. By shifting each row of the plain image randomly, known-plaintext attacks could be resisted. Furthermore, by appending double crossover diffusion to the end of the original scheme, chosen-plaintext attacks lost their efficacies. Simulation results demonstrated that the improved encryption scheme outperforms the original one.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1497 ◽  
Author(s):  
Zhen Li ◽  
Changgen Peng ◽  
Weijie Tan ◽  
Liangrong Li

To ensure the security of digital images during transmission and storage, an efficient and secure chaos-based color image encryption scheme using bit-level permutation is proposed. Our proposed image encryption algorithm belongs to symmetric cryptography. Here, we process three color components simultaneously instead of individually, and consider the correlation between them. We propose a novel bit-level permutation algorithm that contains three parts: a plain-image related rows and columns substitution, a pixel-level roll shift part, and a bit-level cyclic shift part. In the plain-related rows and columns substitution part, we involve the plain-image information to generate a control sequence by using a skew tent system. This process ensures that the correlation between three color components can be totally broken, and our cryptosystem has enough plain-image sensitivity to resist the differential attack. In the pixel-level roll shift part and bit-level cyclic shift part, we have a fully bit-level permutation controlled by two sequences using a Rucklidge system. The simulation and some common security analyses are given. Test results show that our proposed scheme has good security performance and a speed advantage compared to other works.


Sign in / Sign up

Export Citation Format

Share Document