A novel image encryption algorithm based on bit-plane matrix rotation and hyper chaotic systems

2019 ◽  
Vol 79 (9-10) ◽  
pp. 5573-5593 ◽  
Author(s):  
Cong Xu ◽  
Jingru Sun ◽  
Chunhua Wang
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jiming Zheng ◽  
Zheng Luo ◽  
Zhirui Tang

In this paper, an improved two-dimensional logistic-sine coupling map (N2D-LSCM) and an improved Henon map (NHenon) are proposed. Furthermore, by combining N2D-LSCM and NHenon map, an image encryption algorithm is proposed based on these two chaotic systems and DNA coding. The chaotic sequences generated by N2D-LSCM are used as the parameters of NHenon. In the scrambling stage, DNA encoding is carried out for pixels after scrambling by two chaotic sequences generated by N2D-LSCM; in the stage of diffusion, DNA random coding acts on random matrix obtained by two chaotic sequences generated by NHenon, and DNA XOR operation is carried out with the image obtained in the scrambling stage to diffuse. Compared with other 2D map for image encryption algorithm, this algorithm exhibits good security and holds high efficiency.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


2017 ◽  
Vol 28 (05) ◽  
pp. 1750069 ◽  
Author(s):  
Xiuli Chai ◽  
Zhihua Gan ◽  
Yang Lu ◽  
Yiran Chen ◽  
Daojun Han

A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.


Sign in / Sign up

Export Citation Format

Share Document