Deep learning neural network for texture feature extraction in oral cancer: enhanced loss function

2020 ◽  
Vol 79 (37-38) ◽  
pp. 27867-27890 ◽  
Author(s):  
Bishal Bhandari ◽  
Abeer Alsadoon ◽  
P. W. C. Prasad ◽  
Salma Abdullah ◽  
Sami Haddad
2020 ◽  
Vol 16 (3) ◽  
pp. 280-294 ◽  
Author(s):  
Toto Haryanto ◽  
Adib Pratama ◽  
Heru Suhartanto ◽  
Aniati Murni ◽  
Kusmardi Kusmardi ◽  
...  

2020 ◽  
Author(s):  
Satya Kumara

Vegetables cultivation using hydroponic is becoming popular now days because of its irrigation and fertilizer efficiency. One type of vegetable which can be cultivated using hydroponic is green mustard (Brassica juncea L.) tosakan variety. This vegetable is harvested in the vegetative phase, approximately aged of 30 days after planting. In addition, during the vegetative phase, this plant requires more nitrogen for growth of vegetative organs. The lack of nitrogen will lead to slow growth and the leaves turn yellow. In this study, non-destructive technology was developed to identify nitrogen status through the image of green mustard leaf by using digital image processing and artificial neural network. The image processing method used was the color moment for color feature extraction, gray level co-occurrence matrix (GLCM) for texture feature extraction and back propagation neural network to identify nitrogen status from the image of leaf. The input image data resulted from acquisition process was RGB color image which was converted to HSV. Prior to the color and texture feature extraction and texture, acquisition image was segmented and cropped to get the leaf image only. Next Step was to conduct training using back propagation neural network with two hidden layer combinations, 20,000 iteration epoch. Accuracy of the test results using those methods was 97.82%. The result indicates those three methods is reliable to identify nitrogen status in the leaf of green mustard.


2017 ◽  
Vol 40 (6) ◽  
pp. e12575 ◽  
Author(s):  
Ebenezer O. Olaniyi ◽  
Adefemi A. Adekunle ◽  
Temitope Odekuoye ◽  
Adnan Khashman

Author(s):  
Dr. Abul Bashar

The deep learning being a subcategory of the machine learning follows the human instincts of learning by example to produce accurate results. The deep learning performs training to the computer frame work to directly classify the tasks from the documents available either in the form of the text, image, or the sound. Most often the deep learning utilizes the neural network to perform the accurate classification and is referred as the deep neural networks; one of the most common deep neural networks used in a broader range of applications is the convolution neural network that provides an automated way of feature extraction by learning the features directly from the images or the text unlike the machine learning that extracts the features manually. This enables the deep learning neural networks to have a state of art accuracy that mostly expels even the human performance. So the paper is to present the survey on the deep learning neural network architectures utilized in various applications for having an accurate classification with an automated feature extraction.


Sign in / Sign up

Export Citation Format

Share Document