A superlative image encryption technique based on bit plane using key-based electronic code book

2020 ◽  
Vol 79 (43-44) ◽  
pp. 33161-33191
Author(s):  
Manju Kumari ◽  
Shailender Gupta ◽  
Anjali Malik
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 505
Author(s):  
Shuqin Zhu ◽  
Congxu Zhu

This paper analyzes the security of image encryption systems based on bit plane extraction and multi chaos. It includes a bit-level permutation for high, 4-bit planes and bit-wise XOR diffusion, and finds that the key streams in the permutation and diffusion phases are independent of the plaintext image. Therefore, the equivalent diffusion key and the equivalent permutation key can be recovered by the chosen-plaintext attack method, in which only two special plaintext images and their corresponding cipher images are used. The effectiveness and feasibility of the proposed attack algorithm is verified by a MATLAB 2015b simulation. In the experiment, all the key streams in the original algorithm are cracked through two special plaintext images and their corresponding ciphertext images. In addition, an improved algorithm is proposed. In the improved algorithm, the generation of a random sequence is related to ciphertext, which makes the encryption algorithm have the encryption effect of a “one time pad”. The encryption effect of the improved algorithm is better than that of the original encryption algorithm in the aspects of information entropy, ciphertext correlation analysis and ciphertext sensitivity analysis.


2017 ◽  
Vol 28 (05) ◽  
pp. 1750069 ◽  
Author(s):  
Xiuli Chai ◽  
Zhihua Gan ◽  
Yang Lu ◽  
Yiran Chen ◽  
Daojun Han

A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 326 ◽  
Author(s):  
Shouliang Li ◽  
Benshun Yin ◽  
Weikang Ding ◽  
Tongfeng Zhang ◽  
Yide Ma

Considering that a majority of the traditional one-dimensional discrete chaotic maps have disadvantages including a relatively narrow chaotic range, smaller Lyapunov exponents, and excessive periodic windows, a new nonlinearly modulated Logistic map with delay model (NMLD) is proposed. Accordingly, a chaotic map called a first-order Feigenbaum-Logistic NMLD (FL-NMLD) is proposed. Simulation results demonstrate that FL-NMLD has a considerably wider chaotic range, larger Lyapunov exponents, and superior ergodicity compared with existing chaotic maps. Based on FL-NMLD, we propose a new image encryption algorithm that joins the pixel plane and bit-plane shuffle (JPB). The simulation and test results confirm that JPB has higher security than simple pixel-plane encryption and is faster than simple bit-plane encryption. Moreover, it can resist the majority of attacks including statistical and differential attacks.


2018 ◽  
Vol 31 (11) ◽  
pp. 7111-7130 ◽  
Author(s):  
Zhi-hua Gan ◽  
Xiu-li Chai ◽  
Dao-jun Han ◽  
Yi-ran Chen

2006 ◽  
Vol 11 (5) ◽  
pp. 1283-1286
Author(s):  
Liu Bin ◽  
Li Zhitang ◽  
Tu Hao

2018 ◽  
Vol 25 (6) ◽  
pp. 2331-2338 ◽  
Author(s):  
K. Abhimanyu Kumar Patro ◽  
Bibhudendra Acharya ◽  
Vijay Nath

Sign in / Sign up

Export Citation Format

Share Document