An unsupervised font style transfer model based on generative adversarial networks

Author(s):  
Sihan Zeng ◽  
Zhongliang Pan
2021 ◽  
Vol 152 ◽  
pp. 18-25
Author(s):  
Tingting Zhao ◽  
Ying Wang ◽  
Guixi Li ◽  
Le Kong ◽  
Yarui Chen ◽  
...  

2021 ◽  
pp. 658-669
Author(s):  
Lan Wu ◽  
Han Wang ◽  
Tian Gao ◽  
Binquan Li ◽  
Fanshi Kong

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2605 ◽  
Author(s):  
Rafael Anicet Zanini ◽  
Esther Luna Colombini

This paper proposes two new data augmentation approaches based on Deep Convolutional Generative Adversarial Networks (DCGANs) and Style Transfer for augmenting Parkinson’s Disease (PD) electromyography (EMG) signals. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, simulating each patient’s tremor patterns and extending them to different sets of movement protocols. Therefore, one could use these models for extending the existing patient dataset and generating tremor simulations for validating treatment approaches on different movement scenarios.


2019 ◽  
Vol 1314 ◽  
pp. 012191
Author(s):  
Jie Wu ◽  
Jin Duan ◽  
Jinqiang Yu ◽  
Haodong Shi ◽  
Yingchao Li

Author(s):  
Chien-Yu Lu ◽  
Min-Xin Xue ◽  
Chia-Che Chang ◽  
Che-Rung Lee ◽  
Li Su

Style transfer of polyphonic music recordings is a challenging task when considering the modeling of diverse, imaginative, and reasonable music pieces in the style different from their original one. To achieve this, learning stable multi-modal representations for both domain-variant (i.e., style) and domaininvariant (i.e., content) information of music in an unsupervised manner is critical. In this paper, we propose an unsupervised music style transfer method without the need for parallel data. Besides, to characterize the multi-modal distribution of music pieces, we employ the Multi-modal Unsupervised Image-to-Image Translation (MUNIT) framework in the proposed system. This allows one to generate diverse outputs from the learned latent distributions representing contents and styles. Moreover, to better capture the granularity of sound, such as the perceptual dimensions of timbre and the nuance in instrument-specific performance, cognitively plausible features including mel-frequency cepstral coefficients (MFCC), spectral difference, and spectral envelope, are combined with the widely-used mel-spectrogram into a timbreenhanced multi-channel input representation. The Relativistic average Generative Adversarial Networks (RaGAN) is also utilized to achieve fast convergence and high stability. We conduct experiments on bilateral style transfer tasks among three different genres, namely piano solo, guitar solo, and string quartet. Results demonstrate the advantages of the proposed method in music style transfer with improved sound quality and in allowing users to manipulate the output.


2020 ◽  
Vol 27 (3) ◽  
pp. 54-65
Author(s):  
Yaochen Li ◽  
Xiao Wu ◽  
Danhui Lu ◽  
Ling Li ◽  
Yuehu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document