A high gain UWB human face shaped MIMO microstrip printed antenna with high isolation

Author(s):  
A. Dharmarajan ◽  
P. Kumar ◽  
T. J. O. Afullo
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 986 ◽  
Author(s):  
Sining Liu ◽  
Raad Raad ◽  
Panagiotis Ioannis Theoharis ◽  
Faisel Em Tubbal

In this paper, a printed Yagi antenna with an integrated balun is proposed for CubeSat communications. The printed antenna is mechanically adjustable to realize three functional states at different operating frequencies in the L-band and S-band respectively. Three different angle deployments are proposed at 10°, 50° and 90°, so that the antenna operates at three different operating frequencies, namely 1.3 GHz (L-band), 2.4 GHz (S-band) and 3 GHz (S-band). The measured results of the fabricated antenna are well matched with the simulation, having frequencies of 2.82–3.07 GHz, 1.3–1.4 GHz and 2.38–2.57 GHz, with similar radiation patterns. The measured gain of the antenna is 8.167 dBi at 2.4 GHz, 5.278 dBi at 1.3 GHz and 6.120 dBi at 3 GHz. Keeping within the general theme of cheap off the shelf components for CubeSats, this antenna design allows the CubeSat designers to choose from three popular frequencies, through a simple angle configuration. The main contribution of this work lies with the reconfigurable frequency, relatively high gain and simplicity of design.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 250
Author(s):  
Tale Saeidi ◽  
Idris Ismail ◽  
Sima Noghanian ◽  
Adam R. H. Alhawari ◽  
Qammer H. Abbasi ◽  
...  

This paper presents a miniaturized dual-polarized Multiple Input Multiple Output (MIMO) antenna with high isolation. The antenna meets the constraints of sub-6 GHz 5G and the smartphones’ X-band communications. A vertically polarized modified antipodal Vivaldi antenna and a horizontally polarized spiral antenna are designed and integrated, and then their performance is investigated. Three frequency bands of 3.8 GHz, 5.2 GHz, and 8.0 GHz are considered, and the proposed dual-polarized antenna is studied. High isolation of greater than 20 dB is obtained after integration of metamaterial elements, and without applying any other decoupling methods. The proposed triple-band metamaterial-based antenna has 1.6 GHz bandwidth (BW) (2.9 GHz–4.5 GHz), 13.5 dBi gain, and 98% radiation efficiency at 3.8 GHz. At 5.2 GHz it provides 1.2 GHz BW, 9.5 dBi gain, and 96% radiation efficiency. At 8.0 GHz it has 1 GHz BW, 6.75 dBi gain, and 92% radiation efficiency. Four antenna elements (with eight ports) were laid out orthogonally at the four corners of a mobile printed circuit board (PCB) to be utilized as a MIMO antenna for 5G communications. The performance of the MIMO antenna is examined and reported.


Author(s):  
Kalyan Sundar Kola ◽  
R. Kousalya ◽  
BNS Mahalakshmi ◽  
Anirban Chatterjee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document