A TM 03 mode reduced side lobe high‐gain printed antenna array in K band for UDN and IoT applications in 5G

Author(s):  
Joydeep Pal ◽  
Kaushik Patra ◽  
Bhaskar Gupta
2008 ◽  
Vol 2008 ◽  
pp. 1-6
Author(s):  
Aleksandar Nešić ◽  
Ivana Radnović ◽  
Zoran Mićić

The problem of side lobe suppression (SLS) in printed antenna arrays has been investigated in the paper. Influence of several factors that make difficult design and realization of antenna arrays with relatively high SLS has been analyzed. We introduced a new type of printed antenna array with symmetrical pentagonal dipoles and symmetrical tapered feed network with Chebyshev distribution enabling SLS better than 34 dB in E-plane. Agreement between simulated and measured results is very good. The antenna is suitable for integration with other microwave circuits. Presented antenna is low cost and very simple for realization.


Author(s):  
Luong Xuan Truong ◽  
Truong Vu Bang Giang ◽  
Tran Minh Tuan

This paper proposes a new design of low sidelobe level (SLL) and high gain linear printed Vivaldi antenna array. The array composes of two parts, which are a linear Vivaldi antenna array and a back reflector. The array consists of 10 single Vivaldi antennas and a series-fed network, those are based on Roger RO4003C substrate (ε = 3.55) with the dimension of 140 x 450 x 1.524 mm3. A new Bat algorithm with the amplitude-only control technique has been applied to optimize the output coefficients of the series-fed network for gaining a low SLL. The simulation results indicate that the proposed antenna provides a low SLL of -29.2 dB in E-plane with a high gain of 16.5 dBi at the frequency of 3500 MHz. A prototype of the proposed antenna array has been fabricated. The measured data has a good agreement with the simulated data.


A single feed microstrip patch elliptically annular antenna array has been proposed for high gain circularly polarized (CP) radiation. An array of elliptically annular patches antenna resonates at a frequency of 3.77 GHz which can be used in satellite communication and radar application. A corporate feed network with quarter-wave transformer has been used for uniform excitation of all the array elements. Thus a good circular polarization is obtained by using a single feed with enhanced gain 15.62 dB compared to single patch. The radiation pattern, axial ratio and input impedance of the proposed elliptically annular antenna array is compared with single element elliptically annular antenna. A substantial gain enhancement with low side lobe level (SLL) is observed keeping circular polarization intact. Further, simulated and measured results of the proposed antenna array have been compared and found that axial ratio and gain are in good agreement.


Antennas ◽  
2021 ◽  
Author(s):  
V. M. Gavrilov ◽  
R. N. Glukhov ◽  
V. K. Dementiev ◽  
N. N. Korneeva

For operation in the frequency range of 5,1–5,9 GHz, a directional antenna device has been developed for use as part of a base station in a stationary point-to-multipoint system with a controlled beam position. The antenna device is a switched, broadband, ring antenna array with electronic scanning in the azimuthal plane. Its distinctive feature is high gain of the radiating elements, which are used as linear printed antenna arrays with parallel power supply. The required directional characteristics and matching of the emitters have been achieved in the process of parametric synthesis carried out using the CST MS program. In a given frequency range, the emitters are characterized by the following parameters: width of the main lobe of the directional pattern in the E-plane is 6,6…7,5 deg; level of the first side lobe in the E-plane is 0…–11,4 dB; width of the main lobe of the directional pattern in the H-plane is 53,2…73,4 deg; level of the first side lobe in the H-plane is –23,4…–26,4 dB; gain is 17,0…17,5 dB; the reflection coefficient at the input of the emitters does not exceed 0,2. In the horizontal plane the main lobe of the directional pattern at different frequencies is shifted by an angle of 5–10 deg relative to the normal to the radiating opening of the emitters. The reason is a microstrip distributor combined with printed antenna array emitters on a common printed circuit board. The specified offset of the main lobe of the directional pattern does not decrease the functional characteristics of the antenna device, because the difference in level in the direction of the main maximum and in the direction normal to the radiating aperture of antenna arrays does not exceed 0,5 dB. In addition, the specified offset at the given frequency is regular and has the same value for all emitters of the ring antenna array. Therefore, the angular discret and the level of overlap of the directional patterns of the neighboring emitters when scanning in the azimuthal plane remain unchanged. The results of an experimental study of a prototype antenna device have been presented. They are in good agreement with the results of computer modeling.


2017 ◽  
Vol 30 (3) ◽  
pp. 391-402
Author(s):  
Marija Milijic ◽  
Aleksandar Nesic ◽  
Bratislav Milovanovic

The paper discusses the problem of side lobe suppression in the radiation pattern of printed antenna arrays with different 3D reflector surfaces. The antenna array of eight symmetrical pentagonal dipoles with corner reflectors of various angles is examined. All investigated antenna arrays are fed by the same feeding network of impedance transformers enabling necessary amplitude distribution. Considering the different reflector surfaces, the influence of parasitic radiation from feeding network on side lobe suppression is studied to prevent the reception of unwanted noise and to increase a gain.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 152715-152721 ◽  
Author(s):  
Huanhuan Yang ◽  
Tong Li ◽  
Liming Xu ◽  
Xiangyu Cao ◽  
Jun Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document