A concise nodal-based derivation of the floating frame of reference formulation for displacement-based solid finite elements
AbstractThe Floating Frame of Reference Formulation (FFRF) is one of the most widely used methods to analyze flexible multibody systems subjected to large rigid-body motion but small strains and deformations. The FFRF is conventionally derived via a continuum mechanics approach. This tedious and circuitous approach, which still attracts attention among researchers, yields so-called inertia shape integrals. These unhandy volume integrals, arising in the FFRF mass matrix and quadratic velocity vector, depend not only on the degrees of freedom, but also on the finite element shape functions. That is why conventional computer implementations of the FFRF are laborious and error prone; they require access to the algorithmic level of the underlying finite element code or are restricted to a lumped mass approximation. This contribution presents a nodal-based treatment of the FFRF to bypass these integrals. Each flexible body is considered in its spatially discretized state ab initio, wherefore the integrals are replaced by multiplications by a constant finite element mass matrix. Besides that, this approach leads to a simpler and concise but rigorous derivation of the equations of motion. The steps to obtain the inertia-integral-free equations of motion (in 2D and 3D spaces) are presented in a clear and comprehensive way; the final result provides ready-to-implement equations of motion without a lumped mass approximation, in contrast to the conventional formulation.