elastic forces
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 31)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 118 (52) ◽  
pp. e2114551118
Author(s):  
Layne B. Frechette ◽  
Christoph Dellago ◽  
Phillip L. Geissler

Chemical transformations, such as ion exchange, are commonly employed to modify nanocrystal compositions. Yet the mechanisms of these transformations, which often operate far from equilibrium and entail mixing diverse chemical species, remain poorly understood. Here we explore an idealized model for ion exchange in which a chemical potential drives compositional defects to accumulate at a crystal’s surface. These impurities subsequently diffuse inward. We find that the nature of interactions between sites in a compositionally impure crystal strongly impacts exchange trajectories. In particular, elastic deformations which accompany lattice-mismatched species promote spatially modulated patterns in the composition. These same patterns can be produced at equilibrium in core/shell nanocrystals, whose structure mimics transient motifs observed in nonequilibrium trajectories. Moreover, the core of such nanocrystals undergoes a phase transition—from modulated to unstructured—as the thickness or stiffness of the shell is decreased. Our results help explain the varied patterns observed in heterostructured nanocrystals produced by ion exchange and suggest principles for the rational design of compositionally patterned nanomaterials.


2021 ◽  
pp. 107754632110458
Author(s):  
Hamze Mousavi ◽  
Moein Mirzaei ◽  
Samira Jalilvand

The present work investigates the vibrational properties of a DNA-like structure by means of a harmonic Hamiltonian and the Green’s function formalism. The DNA sequence is considered as a quasi one-dimensional system in which the mass-spring pairs are randomly distributed inside each crystalline unit. The sizes of the units inside the system are increased, in a step-by-step approach, so that the actual condition of the DNA could be modeled more accurately. The linear-elastic forces mimicking the bonds between the pairs are initially considered constant along the entire length of the system. In the next step, these forces are randomly shuffled so as to take into account the inherent randomness of the DNA. The results reveal that increasing the number of mass-spring pairs in the crystalline structure decreases the influence of randomness on the mechanical behavior of the structure. This also holds true for systems with larger crystalline units. The obtained results can be used to investigate the mechanical behavior of similar macro-systems.


2021 ◽  
Vol 3 (3) ◽  
pp. 425-434
Author(s):  
Jonathan Friedman ◽  
Lev Mourokh ◽  
Michele Vittadello

We propose a physical mechanism of conformation-induced proton pumping in mitochondrial Complex I. The structural conformations of this protein are modeled as the motion of a piston having positive charges on both sides. A negatively charged electron attracts the piston, moving the other end away from the proton site, thereby reducing its energy and allowing a proton to populate the site. When the electron escapes, elastic forces assist the return of the piston, increasing proton site energy and facilitating proton transfer. We derive the Heisenberg equations of motion for electron and proton operators and rewrite them in the form of rate equations coupled to the phenomenological Langevin equation describing piston dynamics. This set of coupled equations is solved numerically. We show that proton pumping can be achieved within this model for a reasonable set of parameters. The dependencies of proton current on geometry, temperature, and other parameters are examined.


Author(s):  
Gabriel Gonzalez Saiz ◽  
Andrea Sciacchitano ◽  
Fulvio Scarano

An experimental methodology is proposed for the study of aeroelastic systems. The approach locally evaluates the forces involved in Collar’s triangle, namely aerodynamic, elastic, and inertial forces. The position of flow tracers as well as of markers on the object surface is monitored by a volumetric PIV system. From the recorded images, the flow tracers and surfare markers are separated based on their optical characteristics. The resulting images are then analysed by Lagrangian particle tracking. The inertial and elastic forces are obtained solely analysing the motion and the deformation of the solid object, whereas the aerodynamic force distribution is obtained via the pressure-from-PIV technique. Experiments are conducted on a benchmark problem of fluid-structure interaction, featuring a flexible panel installed at the trailing edge of a cylinder. A polynomial fit of the markers’ positions is carried out to determine the panel’s instantaneous shape, from which the inertial and elastic forces are evaluated. The pressure loads on the panel are determined via solution of the Poisson equation for pressure, imposing adaptive boundary conditions that comply with the panel. The simultaneous measurement of the three forces allows to assess the equilibrium of forces, and in turn to close Collar’s triangle.


Author(s):  
Adamu Musa Mohammed ◽  
Mostapha Ariane ◽  
Alessio Alexiadis

Stenting is a common method for treating atherosclerosis. A metal or polymer stent is deployed to open the stenosed artery or vein. After the stent is deployed, the blood flow dynamics influence the mechanics by compressing and expanding the structure. If the stent does not respond properly to the resulting stress, vascular wall injury or re-stenosis can occur. In this work, Discrete Multiphysics is used to study the mechanical deformation of the coronary stent and its relationship with the blood flow dynamics. The major parameters responsible for deforming the stent are sort in terms of dimensionless numbers and a relationship between the elastic forces in the stent and pressure forces in the fluid is established. The blood flow and the stiffness of the stent material contribute significantly to the stent deformation and affect the rate of deformation. The stress distribution in the stent is not uniform with the higher stresses occurring at the nodes of the structure.


2021 ◽  
Author(s):  
Lu Liu ◽  
Qi Zhan ◽  
Jing Zhou ◽  
Qianyun Kuang ◽  
Xinyu Yan ◽  
...  

ABSTRACT Objectives To analyze the biomechanical system of anterior retraction with clear aligner therapy (CAT) with and without an anterior mini-screw and elastics. Materials and Methods Models including a maxillary dentition (without first premolars), maxilla, periodontal ligaments (PDLs), attachments, and aligners were constructed and imported to finite element software. Three model groups were created: (1) control (CAT alone), (2) labial elastics (CAT with elastics between the anterior mini-screw and buttons on central incisors), and (3) linguoincisal elastics (CAT with elastics between the anterior mini-screw and precision cuts on the lingual sides of the aligner). Elastic forces (0–300 g, in 50 g increments) were applied. Results CAT alone caused lingual tipping and extrusion of the incisors. Labial elastics caused palatal root torquing and intrusion and mesial tipping of the central incisors, while linguoincisal elastics produced palatal root torquing and intrusion of both central and lateral incisors. Second premolars were intruded in all three groups, with less intrusion in the linguoincisal elastics group. For the control group, stress was concentrated on both labial and lingual root surfaces, alveolar ridge, and cervical and apical PDLs. Stress was more concentrated in the labial elastics group and less concentrated in the linguoincisal elastics group. Conclusions CAT produced lingual tipping and extrusion of incisors during anterior retraction. Anterior mini-screws and elastics can achieve incisor intrusion and palatal root torquing. Linguoincisal elastics are superior to labial elastics with a lower likelihood of buccal open bite. Root resorption and alveolar defects may occur in CAT, more likely for labial elastics and less likely for linguoincisal elastics.


Author(s):  
J. Marconi ◽  
P. Tiso ◽  
D. E. Quadrelli ◽  
F. Braghin

AbstractWe present an enhanced version of the parametric nonlinear reduced-order model for shape imperfections in structural dynamics we studied in a previous work. In this model, the total displacement is split between the one due to the presence of a shape defect and the one due to the motion of the structure. This allows to expand the two fields independently using different bases. The defected geometry is described by some user-defined displacement fields which can be embedded in the strain formulation. This way, a polynomial function of both the defect field and actual displacement field provides the nonlinear internal elastic forces. The latter can be thus expressed using tensors, and owning the reduction in size of the model given by a Galerkin projection, high simulation speedups can be achieved. We show that the adopted deformation framework, exploiting Neumann expansion in the definition of the strains, leads to better accuracy as compared to the previous work. Two numerical examples of a clamped beam and a MEMS gyroscope finally demonstrate the benefits of the method in terms of speed and increased accuracy.


2021 ◽  
Vol 34 (01) ◽  
pp. 489-503
Author(s):  
Marina V. Byrdina ◽  
Mikhail F. Mitsik ◽  
Lema A. Bekmurzaev ◽  
Svetlana V. Kurenova ◽  
Anastasiya A. Movchun

The paper covers the visualization of a volume-space form of the flexible inextensible one-layer shell that is represented in the stress and strain state appearing during fastening the shell on the upper edge and its free location below the fastening border in the field of gravitational and elastic forces of the material. With no account taken of the gravitational forces, the shell is a right circular flattened cone. A developed program module can be used in designing and calculating the thin-wall shell structures during their non-linear deformation and their visualization. Visualization of the space form of the shell structure can be used for simulating various products, for instance, the cone antennae or the textile products, flexible elastic shells in the hydraulic engineering, etc.


Author(s):  
Oleksii Hrechanyi ◽  
Tatiana Vasilchenko ◽  
Daria Tsimakhovych ◽  
Eduard Huz ◽  
Maksym Karmazin

The influence of changing the technological modes of rolling on the dynamic load of the coilers of rolling mills has been established. The functional equation of motion for strip winding has been determined, the solution of which makes it possible to establish the dependence of the elastic force moment on the strip winding time. The moment of elastic forces is used when calculating the dynamic factor, which characterizes the dynamic loads on the nodes of technological equipment. Investigated the change in the coefficient of dynamism at different thicknesses of the wound strip.


Sign in / Sign up

Export Citation Format

Share Document