floating frame of reference
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Andreas Zwölfer ◽  
Johannes Gerstmayr

AbstractIn a recent paper of the authors, a novel nodal-based floating frame of reference formulation (FFRF) for solid finite elements has been proposed. The nodal-based approach bypasses the unhandy inertia shape integrals ab initio, i.e. they neither arise in the derivation nor in the final equations of motion, leading to a surprisingly simple derivation and computer implementation without a lumped mass approximation, which is conventionally employed within commercial multibody codes. However, the nodal-based FFRF has so far been presented without modal reduction, which is usually required for efficient simulations. Hence, the aim of this follow-up paper is to bring the nodal-based FFRF into a suitable form, which allows the incorporation of modal reduction techniques to reduce the overall system size down to the number of modes included in the reduction basis, which further reduces the computational complexity significantly. Moreover, this exhibits a way to calculate the so-called FFRF invariants, which are constant “ingredients” required to set up the FFRF mass matrix and quadratic velocity vector, without integrals and without a lumped mass approximation.


Author(s):  
Andreas Zwölfer ◽  
Johannes Gerstmayr

Abstract The conventional continuum-mechanics-based floating frame of reference formulation involves unhandy so-called inertia-shape-integrals in the equations of motion, which is why, commercial multibody software codes resort to a lumped mass approximation to avoid the evaluation of these integrals in their computer implementations. This paper recaps the conventional continuum mechanics floating frame of reference formulation and addresses its drawbacks by summarizing recent developments of the so-called nodal-based floating frame of reference formulation, which avoids inertia shape integrals ab initio, does not rely on a lumped mass approximation, and exhibits a way to calculate the so-called invariants, which are constant “ingredients” required to set up the equations of motion, in a consistent way.


2020 ◽  
Vol 231 (4) ◽  
pp. 1337-1350 ◽  
Author(s):  
Lorin Kazaz ◽  
Christian Pfister ◽  
Pascal Ziegler ◽  
Peter Eberhard

2019 ◽  
Vol 49 (3) ◽  
pp. 291-313 ◽  
Author(s):  
Andreas Zwölfer ◽  
Johannes Gerstmayr

AbstractThe Floating Frame of Reference Formulation (FFRF) is one of the most widely used methods to analyze flexible multibody systems subjected to large rigid-body motion but small strains and deformations. The FFRF is conventionally derived via a continuum mechanics approach. This tedious and circuitous approach, which still attracts attention among researchers, yields so-called inertia shape integrals. These unhandy volume integrals, arising in the FFRF mass matrix and quadratic velocity vector, depend not only on the degrees of freedom, but also on the finite element shape functions. That is why conventional computer implementations of the FFRF are laborious and error prone; they require access to the algorithmic level of the underlying finite element code or are restricted to a lumped mass approximation. This contribution presents a nodal-based treatment of the FFRF to bypass these integrals. Each flexible body is considered in its spatially discretized state ab initio, wherefore the integrals are replaced by multiplications by a constant finite element mass matrix. Besides that, this approach leads to a simpler and concise but rigorous derivation of the equations of motion. The steps to obtain the inertia-integral-free equations of motion (in 2D and 3D spaces) are presented in a clear and comprehensive way; the final result provides ready-to-implement equations of motion without a lumped mass approximation, in contrast to the conventional formulation.


Sign in / Sign up

Export Citation Format

Share Document