scholarly journals Dynamics of a flexible body: a two-field formulation

Author(s):  
Michel Géradin

AbstractA two-field formulation of the nonlinear dynamics of an elastic body is presented in which positions/orientations and the resulting velocity field are treated as independent. Combining a nonclassical description of elastic velocity that includes the convection velocity due to elastic deformation with floating reference axes minimizing the relative kinetic energy due to elastic deformation provides a fully uncoupled expression of kinetic energy. A transformation inspired by the classical Legendre transformation concept is introduced to develop the motion equations in canonical form. Finite element discretization is achieved using the same shape function sets for elastic displacements and velocities. Specific attention is brought to the discretization of the gyroscopic forces induced by elastic deformation. A model reduction strategy to construct superelement models suitable for flexible multibody dynamics applications is proposed, which fulfills the essential condition of orthogonality between a rigid body and elastic motions. The problem of expressing kinematic connections at superelement boundaries is briefly addressed. Two academic examples have been developed to illustrate some of the concepts presented.

2009 ◽  
Vol 19 (07) ◽  
pp. 1139-1183 ◽  
Author(s):  
CHRISTINE BERNARDI ◽  
TOMÁS CHACÓN REBOLLO ◽  
FRÉDÉRIC HECHT ◽  
ROGER LEWANDOWSKI

We consider the finite element discretization of the Navier–Stokes equations locally coupled with the equation for the turbulent kinetic energy through an eddy viscosity. We prove a posteriori error estimates which allow to automatically determine the zone where the turbulent kinetic energy must be inserted in the Navier–Stokes equations and also to perform mesh adaptivity in order to optimize the discretization of these equations. Numerical results confirm the interest of such an approach.


Sign in / Sign up

Export Citation Format

Share Document