Prenatal Effects of Fluoxetine on Adaptive Behavior and the Cognitive Domain in Male Rats During the Prepubertal Period of Development

2019 ◽  
Vol 49 (3) ◽  
pp. 341-346
Author(s):  
I. P. Butkevich ◽  
V. A. Mikhailenko
2021 ◽  
Author(s):  
Nina T. Lichtenberg ◽  
Linnea Sepe-Forrest ◽  
Zachary T. Pennington ◽  
Alexander C. Lamparelli ◽  
Venuz Y. Greenfield ◽  
...  

ABSTRACTAdaptive reward-related decision making requires accurate prospective consideration of the current availability and desirability of potential rewarding options. Often this information must be inferred based on the presence of predictive environmental events. The basolateral amygdala (BLA) and medial orbitofrontal cortex (mOFC) are two key nodes in the circuitry supporting such outcome guided behavior, but very little is known about the function of direct connections between these regions. Here, in male rats, we first anatomically confirmed the existence of bidirectional, direct projections between the mOFC and BLA and found that BLA projections to mOFC are distinct from those to lateral OFC (lOFC). Next, using pathway-specific chemogenetic inhibition and the outcome-selective Pavlovian-to-instrumental transfer and devaluation tests, we interrogated the function of the bidirectional mOFC→BLA connections in reward-directed behavior. We found evidence that the mOFC→BLA pathway mediates the use of environmental cues to predict which reward is available, information needed to infer which action to choose, and how desirable that reward is to ensure adaptive cue responses. By contrast, the BLA→mOFC pathway is not needed to use cues to know which reward is available but is needed to use the current desirability of that reward to infer how advantageous it would be to respond to the cue. These functions differ from those we previously identified for the lOFC-BLA circuit. Collectively, these data reveal the mOFC-BLA circuit as critical for the cue-dependent reward outcome expectations that influence adaptive behavior and decision making.SIGNIFICANCE STATEMENTTo make good decisions we evaluate how advantageous a particular course of action would be. This requires understanding what rewarding events might be available and how desirable those events are currently. Such prospective considerations are critical for adaptive decision making but are disrupted in many psychiatric diseases. Here we reveal that direct connections between the medial orbitofrontal cortex and basolateral amygdala mediate these functions. These findings are especially important in light of evidence of dysfunction in this circuit in substance use disorder and mental illnesses marked by poor decision making.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Author(s):  
K. Kovacs ◽  
E. Horvath ◽  
J. M. Bilbao ◽  
F. A. Laszlo ◽  
I. Domokos

Electrolytic lesions of the pituitary stalk in rats interrupt adenohypophysial blood flow and result in massive infarction of the anterior lobe. In order to obtain a deeper insight into the morphogenesis of tissue injury and to reveal the sequence of events, a fine structural investigation was undertaken on adenohypophyses of rats at various intervals following destruction of the pituitary stalk.The pituitary stalk was destroyed electrolytically, with a Horsley-Clarke apparatus on 27 male rats of the R-Amsterdam strain, weighing 180-200 g. Thirty minutes, 1,2,4,6 and 24 hours after surgery the animals were perfused with a glutaraldehyde-formalin solution. The skulls were then opened and the pituitary glands removed. The anterior lobes were fixed in glutaraldehyde-formalin solution, postfixed in osmium tetroxide and embedded in Durcupan. Ultrathin sections were stained with uranyl acetate and lead citrate and investigated with a Philips 300 electron microscope.


Author(s):  
K.A. Carson ◽  
C.B. Nemeroff ◽  
M.S. Rone ◽  
J.S. Kizer ◽  
J.S. Hanker

Biochemical, physiological, pharmacological, and more recently enzyme histo- chemical data have indicated that cholinergic circuits exist in the hypothalamus. Ultrastructural correlates of these pathways such as acetylcholinesterase (AchE) positive neurons in the arcuate nucleus (ARC) and stained terminals in the median eminence (ME) have yet to be described. Initial studies in our laboratories utilizing chemical lesioning and microdissection techniques coupled with microchemical and light microscopic enzyme histo- chemical studies suggested the existence of cholinergic neurons in the ARC which project to the ME (1). Furthermore, in adult male rats with Halasz deafferentations (hypothalamic islands composed primarily of the isolated ARC and the ME) choline acetyltransferase (ChAc) activity, a good marker for cholinergic neurons, was not significantly reduced in the ME and was only somewhat reduced in the ARC (2). Treatment of neonatal rats with high doses of monosodium 1-glutamate (MSG) results in a lesion largely restricted to the neurons of the ARC.


Author(s):  
R. Carriere

The external orbital gland of the albino rat exhibits both sexual dimorphism and histological age changes. In males, many cells attain a remarkable degree of polyploidy and an increase of polyploid cell number constitutes the major age change until young adulthood. The acini of young adults have a small lumen and are composed of tall serous cells. Subsequently, many acini acquire a larger lumen with an irregular outline while numerous vacuoles accumulate throughout the secretory cells. At the same time, vesicular acini with a large lumen surrounded by pale-staining low cuboidal diploid cells begin to appear and their number increases throughout old age. The fine structure of external orbital glands from both sexes has been explored and in considering acinar cells from males, emphasis was given to the form of the Golgi membranes and to nuclear infoldings of cytoplasmic constituents.


Author(s):  
Venita F. Allison

In 1930, Moore, Hughes and Gallager reported that after castration seminal vesicle epithelial cell atrophy occurred and that cell regeneration could be achieved with daily injections of testis extract. Electron microscopic studies have confirmed those observations and have shown that testosterone injections restore the epithelium of the seminal vesicle in adult castrated male rats. Studies concerned with the metabolism of androgens point out that dihydrotestosterone stimulates cell proliferation and that other metabolites of testosterone probably influence secretory function in certain target cells.Although the influence of androgens on adult seminal vesicle epithelial cytology is well documented, little is known of the effect of androgen depletion and replacement on those cells in aging animals. The present study is concerned with the effect of castration and testosterone injection on the epithelium of the seminal vesicle of aging rats.


Sign in / Sign up

Export Citation Format

Share Document