Prediction of the suitable distribution of Eucalyptus grandis in China and its responses to climate change

New Forests ◽  
2021 ◽  
Author(s):  
Linnan Ouyang ◽  
Roger J. Arnold ◽  
Shaoxiong Chen ◽  
Yaojian Xie ◽  
Shae He ◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 948 ◽  
Author(s):  
Fernando Resquin ◽  
Joaquín Duque-Lazo ◽  
Cristina Acosta-Muñoz ◽  
Cecilia Rachid-Casnati ◽  
Leonidas Carrasco-Letelier ◽  
...  

Eucalyptus grandis and E. dunnii have high productive potential in the South of Brazil, Uruguay, and central Argentina. This is based on the similarity of the climate and soil of these areas, which form an eco-region called Campos. However, previous results show that these species have differences in their distribution caused by the prioritization of Uruguayan soils for forestry, explained by the particular conditions of each site. In this study, the site variables (climate, soil, and topography) that better explain the distribution of both species were identified, and prediction models of current and future distribution were adjusted for different climate change scenarios (years 2050 and 2070). The distribution of E. grandis was associated with soil parameters, whereas for E. dunnii a greater effect of the climatic variables was observed. The ensemble biomod2 model was the most precise with regard to predicting the habitat for both species with respect to the simple models evaluated. For E. dunnii, the average values of the AUC, Kappa, and TSS index were 0.98, 0.88, and 0.77, respectively. For E. grandis, their values were 0.97, 0.86, and 0.80, respectively. In the projections of climatic change, the distribution of E. grandis occurrence remains practically unchanged, even in the scenarios of temperature increase. However, current distribution of E. dunnii shows high susceptibility in a scenario of increased temperature, to the point that most of the area currently planted may be at risk. Our results might be useful to political government and foresters for decision making in terms of future planted areas.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

2019 ◽  
Author(s):  
Randall S. Abate
Keyword(s):  

Author(s):  
Brian C. O'Neill ◽  
F. Landis MacKellar ◽  
Wolfgang Lutz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document