Effect of Treadmill Exercise on Serotonin Immunoreactivity in Medullary Raphe Nuclei and Spinal Cord Following Sciatic Nerve Transection in Rats

2009 ◽  
Vol 35 (3) ◽  
pp. 380-389 ◽  
Author(s):  
Arthiese Korb ◽  
Leandro Viçosa Bonetti ◽  
Sandro Antunes da Silva ◽  
Simone Marcuzzo ◽  
Jocemar Ilha ◽  
...  
Neuroreport ◽  
1997 ◽  
Vol 8 (13) ◽  
pp. 2837-2840 ◽  
Author(s):  
A L. R. Oliveira ◽  
M Risling ◽  
M Deckner ◽  
T Lindholm ◽  
F Langone ◽  
...  

2018 ◽  
Vol 314 (3) ◽  
pp. G341-G348 ◽  
Author(s):  
Hiroyuki Nakamori ◽  
Kiyotada Naitou ◽  
Yuuki Horii ◽  
Hiroki Shimaoka ◽  
Kazuhiro Horii ◽  
...  

Colorectal motility is regulated by two defecation centers located in the brain and spinal cord. In previous studies, we have shown that administration of serotonin (5-HT) in the lumbosacral spinal cord causes enhancement of colorectal motility. Because spinal 5-HT is derived from neurons of the medullary raphe nuclei, including the raphe magnus, raphe obscurus, and raphe pallidus, we examined whether stimulation of the medullary raphe nuclei enhances colorectal motility via the lumbosacral defecation center. Colorectal pressure was recorded with a balloon in vivo in anesthetized rats. Electrical stimulation of the medullary raphe nuclei failed to enhance colorectal motility. Because GABAergic neurons can be simultaneously activated by the raphe stimulation and released GABA masks accelerating actions of the raphe nuclei on the lumbosacral defecation center, a GABAA receptor antagonist was preinjected intrathecally to manifest excitatory responses. When spinal GABAA receptors were blocked by the antagonist, electrical stimulation of the medullary raphe nuclei increased colorectal contractions. This effect of the raphe nuclei was inhibited by intrathecal injection of 5-hydroxytryptamine type 2 (5-HT2) and type 3 (5-HT3) receptor antagonists. In addition, injection of a selective 5-HT reuptake inhibitor in the lumbosacral spinal cord augmented the raphe stimulation-induced enhancement of colorectal motility. Transection of the pelvic nerves, but not transection of the colonic nerves, prevented the effect of the raphe nuclei on colorectal motility. These results demonstrate that activation of the medullary raphe nuclei causes augmented contractions of the colorectum via 5-HT2 and 5-HT3 receptors in the lumbosacral defecation center. NEW & NOTEWORTHY We have shown that electrical stimulation of the medullary raphe nuclei causes augmented contractions of the colorectum via pelvic nerves in rats. The effect of the medullary raphe nuclei on colorectal motility is exerted through activation of 5-hydroxytryptamine type 2 and type 3 receptors in the lumbosacral defecation center. The descending serotoninergic raphespinal tract represents new potential therapeutic targets against colorectal dysmotility such as irritable bowel syndrome.


2017 ◽  
Vol 78 (2) ◽  
pp. 217-223
Author(s):  
A. Kroth ◽  
V. Mackedanz ◽  
C. Matté ◽  
A. T. S. Wyse ◽  
M. F. M. Ribeiro ◽  
...  

Abstract Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of “phantom limb”, a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzyme’s activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


2006 ◽  
Vol 407 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Fábio Rogério ◽  
Simone Aparecida Teixeira ◽  
Hamilton Jordão Júnior ◽  
Carla Cristina Judice Maria ◽  
André Schwambach Vieira ◽  
...  

1984 ◽  
Vol 52 (5) ◽  
pp. 961-979 ◽  
Author(s):  
C. T. Yen ◽  
P. S. Blum

Extracellular single-unit recordings were made in the anesthetized cat from neurons within the medullary raphe nuclei and nearby reticular formation. The descending axons from some of these neurons were characterized in terms of length, conduction velocity, and location within the white matter of the spinal cord. The sensory properties were characterized following somatic, baroreceptor, visual, and auditory stimuli. The mean conduction velocities of the descending axons from neurons in the medullary raphe nuclei and in the magnocellular tegmental field (26 m/s) were significantly slower than the mean conduction velocities of units in the regions immediately dorsal to them (50 m/s). Action potentials in neurons in the medullary raphe nuclei and in the magnocellular tegmental field were evoked by anti-dromic stimulation from the dorsolateral portion of the spinal cord (30 of 43, 70%), whereas neurons located in more dorsal regions along the midline and in the reticular formation projected into the ventral columns (18 of 25, 72%). Neurons were most easily activated by a tap stimulus to the body surface. This stimulus activated 84% of the neurons tested. The receptive fields were large, often including the four limbs, back, and head. Tap-sensitive neurons were found throughout the regions investigated. Stimulation of hair receptors activated 37% of neurons tested, whereas 19% responded to a high-intensity cutaneous stimulus (pinch), 35% responded to baroreceptor stimuli, 32% responded to visual stimuli, and 33% responded to auditory stimuli. Neurons responsive to pinch were likely to respond to baroreceptor stimuli and unlikely to respond to visual stimuli. Neurons responsive to visual stimuli were likely to respond to auditory stimuli.


2001 ◽  
Vol 899 (1-2) ◽  
pp. 240-247 ◽  
Author(s):  
Suellen M Walker ◽  
Vanessa A Mitchell ◽  
Deborah M White ◽  
Robert A Rush ◽  
Arthur W Duggan

Neuroreport ◽  
1998 ◽  
Vol 9 (2) ◽  
pp. 357-361 ◽  
Author(s):  
Patrick A. Carr ◽  
Valerie Haftel ◽  
Francisco J. Alvarez ◽  
Timothy C. Cope ◽  
Robert E. W. Fyffe

Sign in / Sign up

Export Citation Format

Share Document