Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes

2007 ◽  
Vol 52 (3) ◽  
pp. 217-225 ◽  
Author(s):  
W. K. Lee ◽  
K. S. Lee ◽  
C. H. Pak
2013 ◽  
Vol 325-326 ◽  
pp. 214-217
Author(s):  
Yong Chen ◽  
Yi Xu

Using nonlinear energy sink absorber (NESA) is a good countermeasure for vibration suppression in wide board frequency region. The nonlinear normal modes (NNMs) are helpful in dynamics analysis for a NESA-attached system. Being a primary structure, a cantilever beam whose modal functions contain hyperbolic functions is surveyed, in case of being attached with NESA and subjected to a harmonic excitation. With the help of Galerkins method and Raushers method, the NNMs are obtained analytically. The comparison of analytical and numerical results indicates a good agreement, which confirms the existence of the nonlinear normal modes.


1995 ◽  
Vol 117 (4) ◽  
pp. 477-481 ◽  
Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
S. A. Nayfeh

Two approaches for determination of the nonlinear planar modes of a cantilever beam are compared. In the first approach, the governing partial-differential system is discretized using the linear mode shapes and then the nonlinear mode shapes are determined from the discretized system. In the second approach, the boundary-value problem is treated directly by using the method of multiple scales. The results show that both approaches yield the same nonlinear modes because the discretization is performed using a complete set of basis functions, namely, the linear mode shapes.


2020 ◽  
Vol 90 (6) ◽  
pp. 1247-1266 ◽  
Author(s):  
Lokanna Hoskoti ◽  
Ajay Misra ◽  
Mahesh M. Sucheendran

Author(s):  
G. Rega ◽  
N. Srinil ◽  
S. Chucheepsakul

Internally resonant dynamics in the nonlinear free vibrations of suspended cables are analytically investigated by means of a multi-mode Galerkin-based discretization and second-order multiple scales. Emphasis is placed on planar 2:1 internal resonances. The equations of motion of a general inclined cable model, which account for the dynamic extensibility effects and the system asymmetry due to inclined equilibrium, are considered. By considering higher-order effects due to quadratic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations associated with the resonant nonlinear normal modes reveal the dependence of cable nonlinear response on different resonant and non-resonant modes. Based on the modal convergence properties performed on the resonantly activated cables, the illustrative results provide hints for proper reduced-order model selections from the asymptotic solution. The underlying effects of cable inclination and cable sag are presented. The theoretical predictions are validated by finite difference numerical time laws of the original system equations of motion.


1980 ◽  
Vol 47 (3) ◽  
pp. 645-651 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-freedom Hamiltonian system is studied by deriving an approximation for the Poincare´ map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as an alternative to the usual linearized stability analysis based on Floquet theory. An example is given for which the Floquet theory approach fails to predict stability but for which the Poincare´ map approach succeeds.


Sign in / Sign up

Export Citation Format

Share Document