scholarly journals Spike-adding and reset-induced canard cycles in adaptive integrate and fire models

Author(s):  
Mathieu Desroches ◽  
Piotr Kowalczyk ◽  
Serafim Rodrigues
2007 ◽  
Vol 19 (12) ◽  
pp. 3226-3238 ◽  
Author(s):  
Arnaud Tonnelier ◽  
Hana Belmabrouk ◽  
Dominique Martinez

Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.


2004 ◽  
Vol 92 (2) ◽  
pp. 959-976 ◽  
Author(s):  
Renaud Jolivet ◽  
Timothy J. Lewis ◽  
Wulfram Gerstner

We demonstrate that single-variable integrate-and-fire models can quantitatively capture the dynamics of a physiologically detailed model for fast-spiking cortical neurons. Through a systematic set of approximations, we reduce the conductance-based model to 2 variants of integrate-and-fire models. In the first variant (nonlinear integrate-and-fire model), parameters depend on the instantaneous membrane potential, whereas in the second variant, they depend on the time elapsed since the last spike [Spike Response Model (SRM)]. The direct reduction links features of the simple models to biophysical features of the full conductance-based model. To quantitatively test the predictive power of the SRM and of the nonlinear integrate-and-fire model, we compare spike trains in the simple models to those in the full conductance-based model when the models are subjected to identical randomly fluctuating input. For random current input, the simple models reproduce 70–80 percent of the spikes in the full model (with temporal precision of ±2 ms) over a wide range of firing frequencies. For random conductance injection, up to 73 percent of spikes are coincident. We also present a technique for numerically optimizing parameters in the SRM and the nonlinear integrate-and-fire model based on spike trains in the full conductance-based model. This technique can be used to tune simple models to reproduce spike trains of real neurons.


2000 ◽  
Vol 62 (3) ◽  
pp. 467-481 ◽  
Author(s):  
J Feng and David Brown

2008 ◽  
Vol 99 (4-5) ◽  
pp. 361-370 ◽  
Author(s):  
Laurent Badel ◽  
Sandrine Lefort ◽  
Thomas K. Berger ◽  
Carl C. H. Petersen ◽  
Wulfram Gerstner ◽  
...  

2013 ◽  
Vol 110 (7) ◽  
pp. 1672-1688 ◽  
Author(s):  
Bertrand Fontaine ◽  
Victor Benichoux ◽  
Philip X. Joris ◽  
Romain Brette

A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of magnitude. The spike trains of neurons in the auditory system must represent the fine temporal structure of sounds despite a tremendous variation in sound level in natural environments. It has been shown in vitro that the transformation from dynamic signals into precise spike trains can be accurately captured by simple integrate-and-fire models. In this work, we show that the in vivo responses of cochlear nucleus bushy cells to sounds across a wide range of levels can be precisely predicted by deterministic integrate-and-fire models with adaptive spike threshold. Our model can predict both the spike timings and the firing rate in response to novel sounds, across a large input level range. A noisy version of the model accounts for the statistical structure of spike trains, including the reliability and temporal precision of responses. Spike threshold adaptation was critical to ensure that predictions remain accurate at different levels. These results confirm that simple integrate-and-fire models provide an accurate phenomenological account of spike train statistics and emphasize the functional relevance of spike threshold adaptation.


2018 ◽  
Vol 264 (4) ◽  
pp. 2495-2537 ◽  
Author(s):  
Piotr Kasprzak ◽  
Adam Nawrocki ◽  
Justyna Signerska-Rynkowska

2014 ◽  
Vol 14 (03) ◽  
pp. 1450001 ◽  
Author(s):  
Anna Levina ◽  
J. Michael Herrmann

We define the Abelian distribution and study its basic properties. Abelian distributions arise in the context of neural modeling and describe the size of neural avalanches in fully-connected integrate-and-fire models of self-organized criticality in neural systems.


Sign in / Sign up

Export Citation Format

Share Document