scholarly journals Model reduction of the tippedisk: a path to the full analysis

Author(s):  
Simon Sailer ◽  
Remco I. Leine

AbstractThe tippedisk is a mechanical-mathematical archetype for friction-induced instability phenomena that exhibits an interesting inversion phenomenon when spun rapidly. The inversion phenomenon of the tippedisk can be modeled by a rigid eccentric disk in permanent contact with a flat support, and the dynamics of the system can therefore be formulated as a set of ordinary differential equations. The qualitative behavior of the nonlinear system can be analyzed, leading to slow–fast dynamics. Since even a freely rotating rigid body with six degrees of freedom already leads to highly nonlinear system equations, a general analysis for the full system equations is not feasible. In a first step the full system equations are linearized around the inverted spinning solution with the aim to obtain a local stability analysis. However, it turns out that the linear dynamics of the full system cannot properly describe the qualitative behavior of the tippedisk. Therefore, we simplify the equations of motion of the tippedisk in such a way that the qualitative dynamics are preserved in order to obtain a reduced model that will serve as the basis for a following nonlinear stability analysis. The reduced equations are presented here in full detail and are compared numerically with the full model. Furthermore, using the reduced equations we give approximate closed form results for the critical spinning speed of the tippedisk.

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
W. Habchi ◽  
D. Eyheramendy ◽  
P. Vergne ◽  
G. Morales-Espejel

The solution of the elastohydrodynamic lubrication (EHL) problem involves the simultaneous resolution of the hydrodynamic (Reynolds equation) and elastic problems (elastic deformation of the contacting surfaces). Up to now, most of the numerical works dealing with the modeling of the isothermal EHL problem were based on a weak coupling resolution of the Reynolds and elasticity equations (semi-system approach). The latter were solved separately using iterative schemes and a finite difference discretization. Very few authors attempted to solve the problem in a fully coupled way, thus solving both equations simultaneously (full-system approach). These attempts suffered from a major drawback which is the almost full Jacobian matrix of the nonlinear system of equations. This work presents a new approach for solving the fully coupled isothermal elastohydrodynamic problem using a finite element discretization of the corresponding equations. The use of the finite element method allows the use of variable unstructured meshing and different types of elements within the same model which leads to a reduced size of the problem. The nonlinear system of equations is solved using a Newton procedure which provides faster convergence rates. Suitable stabilization techniques are used to extend the solution to the case of highly loaded contacts. The complexity is the same as for classical algorithms, but an improved convergence rate, a reduced size of the problem and a sparse Jacobian matrix are obtained. Thus, the computational effort, time and memory usage are considerably reduced.


PAMM ◽  
2009 ◽  
Vol 9 (1) ◽  
pp. 279-280 ◽  
Author(s):  
Aydin Boyaci ◽  
Wolfgang Seemann ◽  
Carsten Proppe

1978 ◽  
Vol 45 (1) ◽  
pp. 165-169 ◽  
Author(s):  
P. J. Holmes ◽  
Y. K. Lin

We discuss the qualitative behavior of a pair of nonlinear differential equations arising in the study of a wind loading problem when turbulence terms are ignored. We obtain quantitative estimates of stability boundaries and are able to identify the most dangerous excitation conditions. This deterministic study provides the basis for further work on the full stochastic differential equations resulting when turbulence terms are included.


Sign in / Sign up

Export Citation Format

Share Document