A hybrid algorithm for solving linear inequalities in a least squares sense

2008 ◽  
Vol 50 (2) ◽  
pp. 97-114 ◽  
Author(s):  
Achiya Dax
2002 ◽  
Vol 56 (7) ◽  
pp. 877-886 ◽  
Author(s):  
Christine M. Wehlburg ◽  
David M. Haaland ◽  
David K. Melgaard

A new prediction-augmented classical least-squares/partial least-squares (PACLS/PLS) hybrid algorithm is ideally suited for use in transferring multivariate calibrations between spectrometers. Spectral variations such as instrument response differences can be explicitly incorporated into the algorithm through the use of subset sample spectra collected on both spectrometers. Two current calibration transfer methods, subset recalibration and piecewise direct standardization (PDS), also utilize subset sample spectra to facilitate transfer of calibration. The three methods were applied to the transfer of quantitative multivariate calibration models for near-infrared (NIR) data of organic samples containing chlorobenzene, heptane, and toluene between a primary and three secondary spectrometers that were all the same model, called intra-vendor transfer of calibration. The hybrid PACLS/PLS method outperformed subset recalibration and provided predictions equivalent to PDS with additive background correction on the two secondary spectrometers whose instrument drift appeared to be dominated by simple linear baseline variations. One of the secondary spectrometers had complex instrument drift that was captured by repeatedly measuring the spectrum of a single repeat sample. In calculating a transfer function to correct prediction spectra, PDS assumes no instrumental drift on the secondary spectrometer. Therefore, PDS was unable to directly accommodate both the subset samples and the use of a single repeat sample to transfer and maintain a calibration on that secondary instrument. In order to implement the transfer of calibration with PDS in the presence of complex instrument drift, recalibrated PLS models that included the repeat spectra from the secondary spectrometer were used to predict the spectra transformed by PDS. The importance of correcting for drift on the secondary spectrometer during calibration transfer was illustrated by the improvements in prediction for all three methods vs. using only the instrument response differences derived from the subset sample spectra. When the effects of instrument drift were complex on the secondary spectrometer, the PACLS/PLS hybrid algorithm outperformed both PDS and subset recalibration. Through the explicit incorporation of spectral variations, due to instrument response differences and drift on the secondary spectrometer, the PACLS/PLS algorithm was successful at intra-vendor transfer of calibrations between NIR spectrometers.


1996 ◽  
Vol 17 (1) ◽  
pp. 275-286 ◽  
Author(s):  
R. Bramley ◽  
B. Winnicka

2002 ◽  
Vol 56 (5) ◽  
pp. 605-614 ◽  
Author(s):  
Christine M. Wehlburg ◽  
David M. Haaland ◽  
David K. Melgaard ◽  
Laura E. Martin

Our newly developed prediction-augmented classical least-squares/partial least-squares (PACLS/PLS) hybrid algorithm can correct for the presence of unmodeled sources of spectral variation such as instrument drift by explicitly incorporating known or empirically derived information about the unmodeled spectral variation. We have tested the ability of the new hybrid algorithm to maintain a multivariate calibration in the presence of instrument drift using a near-infrared (NIR) spectrometer (7500–11 000 cm−1) to quantitate dilute aqueous solutions containing glucose, ethanol, and urea. The spectral variations required to update the multivariate models for both short- and long-term drift were obtained using a single representative midpoint sample whose spectrum was repeatedly measured during collection of calibration data and during collection of separate validation sample spectra on three subsequent days. The performance of the PACLS/PLS model for maintaining a calibration was compared to PLS with subset recalibration, a method that has previously been applied to maintenance and transfer of calibration. Without drift corrections, both PACLS/PLS and PLS had poor predictive ability on sample spectra collected on subsequent days. Unlike previous maintenance of calibration studies that corrected for long-term drift only, the PACLS/PLS and PLS models demonstrated the best predictive abilities when short-term drift was also corrected. The PACLS/PLS hybrid model outperformed PLS with subset recalibration for near real-time predictions when instrument drift was determined from the repeat samples closest in time to the measurement of the unknown. Near real-time standard errors of prediction (SEPs) for the hybrid model were comparable to the cross-validated SEPs obtained with the original calibration model.


Sign in / Sign up

Export Citation Format

Share Document