system of linear inequalities
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Cinzia Bisi ◽  
Giampiero Chiaselotti ◽  
Tommaso Gentile

In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.


Author(s):  
Ta Van Tu

AbstractIn this paper, we propose a method for determining all minimal representations of a face of a polyhedron defined by a system of linear inequalities. Main difficulties for determining prime and minimal representations of a face are that the deletion of one redundant constraint can change the redundancy of other constraints and the number of descriptor index pairs for the face can be huge. To reduce computational efforts in finding all minimal representations of a face, we prove and use properties that deleting strongly redundant constraints does not change the redundancy of other constraints and all minimal representations of a face can be found only in the set of all prime representations of the face corresponding to the maximal descriptor index set for it. The proposed method is based on a top-down search strategy, is easy to implement, and has many computational advantages. Based on minimal representations of a face, a reduction of degeneracy degrees of the face and ideas to improve some known methods for finding all maximal efficient faces in multiple objective linear programming are presented. Numerical examples are given to illustrate the method.


Author(s):  
Sergei I. Noskov ◽  
◽  
Anatoly V. Lakeyev ◽  

The problem of solving the interval system of linear algebraic equations (ISLAEs) is one of the well-known problems of interval analysis, which is currently undergoing intensive development. In general, this solution represents a set, which may be given differently, de- pending on which quantifiers are related to the elements of the left and right sides of this system. Each set of solutions of ISLAE to be determined is described by the domain of compatibility of the corresponding system of linear inequalities and, normally, one nonlinear condition of the type of complementarity. It is difficult to work with them when solving specific problems. Therefore, in the case of nonemptiness in the process of solving the problem it is recommended to find a so-called PC-solution, based on the application of the technique known in the theory of multi-criterial choice, that presumes maximization of the solving capacity of the system of inequalities. If this set is empty, it is recommended to find a quasi- solution of ISLAE. The authors compare the approach proposed for finding PC- and/or quasi-solutions to the approach proposed by S. P. Shary, which is based on the application of the recognizing functional.


Author(s):  
Alexander S. Popkov ◽  

The article considers the problem of constructing reachability and controllability sets for a control problem. The motion of an object is described by a linear system of ordinary differential equations, and control is selected from the class of piecewise-constant functions. Straight boundaries are also set on the controls. The article provides definitions of reacha- bility and controllability sets. It is shown that the problems of constructing these sets are equivalent and can be reduced to the problem of linear mapping of a multidimensional cube. The properties of these sets are also given. In addition, the existing approaches to solving the problem are analyzed. Since they are all too computationally complex, the question of creating a more efficient algorithm arises. The work proposes an algorithm for constructing the required sets as a system of linear inequalities. A proof of the theorem showing the correctness of the algorithm is provided. The complexity of the presented approach is estimated.


2019 ◽  
Vol 53 (5) ◽  
pp. 1929-1935
Author(s):  
Satoru Fujishige

The present note reveals the role of the concept of greedy system of linear inequalities played in connection with lexicographically optimal solutions on convex polyhedra and discrete convexity. The lexicographically optimal solutions on convex polyhedra represented by a greedy system of linear inequalities can be obtained by a greedy procedure, a special form of which is the greedy algorithm of J. Edmonds for polymatroids. We also examine when the lexicographically optimal solutions become integral. By means of the Fourier–Motzkin elimination Murota and Tamura have recently shown the existence of integral points in a polyhedron arising as a subdifferential of an integer-valued, integrally convex function due to Favati and Tardella [Murota and Tamura, Integrality of subgradients and biconjugates of integrally convex functions. Preprint arXiv:1806.00992v1 (2018)], which can be explained by our present result. A characterization of integrally convex functions is also given.


2018 ◽  
Vol 28 (2) ◽  
pp. 169-173
Author(s):  
N. N. Katerinochkina ◽  
V. V. Ryazanov ◽  
A. P. Vinogradov ◽  
Liping Wang

Author(s):  
Marina Litvak ◽  
Natalia Vanetik

The problem of extractive summarization for a collection of documents is defined as the problem of selecting a small subset of sentences so that the contents and meaning of the original document set are preserved in the extract in best possible way. In this chapter, the authors present a linear model for the problem of extractive text summarization, where they strive to obtain a summary that preserves the information coverage as much as possible in comparison to the original document set. The authors measure the information coverage in terms and reduce the summarization task to the maximum coverage problem. They construct a system of linear inequalities that describes the given document set and its possible summaries and translate the problem of finding the best summary to the problem of finding the point on a convex polytope closest to the given hyperplane. This re-formulated problem can be solved efficiently with the help of linear programming. The experimental results show the partial superiority of our introduced approach over other systems participated in the generic multi-document summarization tasks of the DUC 2002 and the MultiLing 2013 competitions.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
R. Pablo Arribillaga ◽  
Jordi Massó ◽  
Alejandro Neme

We study cooperative and competitive solutions for a many-to-many generalization of Shapley and Shubik’s (1971) assignment game. We consider the Core, three other notions of group stability, and two alternative definitions of competitive equilibrium. We show that (i) each group stable set is closely related to the Core of certain games defined using a proper notion of blocking and (ii) each group stable set contains the set of payoff vectors associated with the two definitions of competitive equilibrium. We also show that all six solutions maintain a strictly nested structure. Moreover, each solution can be identified with a set of matrices of (discriminated) prices which indicate how gains from trade are distributed among buyers and sellers. In all cases such matrices arise as solutions of a system of linear inequalities. Hence, all six solutions have the same properties from a structural and computational point of view.


Sign in / Sign up

Export Citation Format

Share Document