Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic

2018 ◽  
Vol 81 (1) ◽  
pp. 237-267 ◽  
Author(s):  
Samad Noeiaghdam ◽  
Mohammad Ali Fariborzi Araghi ◽  
Saeid Abbasbandy
Filomat ◽  
2016 ◽  
Vol 30 (6) ◽  
pp. 1633-1650 ◽  
Author(s):  
Mustafa Turkyilmazoglu

A rapid and effective way of working out the optimum parameter of convergence control in the homotopy analysis method (HAM) is introduced in this paper. As compared with the already known ways of evaluating the convergence control parameter in HAM either through the classical h-level curves with h being the convergence control parameter or from the classical squared residual formula as adopted in the HAM society, an elegant way of calculating the convergence control parameter yielding the same optimum values is offered. In most cases, the new method is shown to perform quicker and better against the residual error method when integrations are much harder to evaluate or even by numerical means. Examples originating from real life applications selected from the literature demonstrate the validity and usefulness of the introduced technique.


2016 ◽  
Vol 16 (09) ◽  
pp. 1520001 ◽  
Author(s):  
Yaobin Niu ◽  
Zhongwei Wang ◽  
Dequan Wang ◽  
Bing Liu

In this paper, the homotopy analysis method (HAM) is extended to deal with the nonlinear aeroelastic problem of a two degree-of-freedom (DOF) airfoil. To avoid determination of the parameter for the complicated high-order minimization problem, a new modified HAM is proposed based on the idea of minimizing the squared residual. Using this method, the convergence-control parameter is determined by the low order squared residual of the governing equations, and then the problem is solved in a way similar to the basic HAM. The proposed method is used to solve the nonlinear aeroelastic behavior of a supersonic airfoil, with the unsteady aerodynamic load evaluated by the piston theory. Two examples are prepared, for which the frequencies and amplitudes of the limit cycles are obtained. The approximate solutions obtained are demonstrated to agree excellently the numerical solutions, meanwhile, the convergence-control parameter can be easily determined using the present approach.


2013 ◽  
Vol 11 (8) ◽  
pp. 2859-2866 ◽  
Author(s):  
Shaheed N Huseen ◽  
Said R.Grace ◽  
Magdy A. El-Tawil

In this paper, an optimal q-homotopy analysis method (Oq-HAM) is proposed. We present some examples to show the reliability and efficiency of the method. It is compared with the one-step optimal homotopy analysis method. The results reveal that the Oq-HAM has more accuracy to determine the convergence-control parameter than the one-step optimal HAM.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Inayat Ullah ◽  
M. T. Rahim ◽  
Hamid Khan ◽  
Mubashir Qayyum

The aim of the present work is to analyze the magnetohydrodynamic (MHD) squeezing flow through porous medium using homotopy analysis method (HAM). Fourth-order boundary value problem is modeled through stream functionψ(r,z)and transformationψ(r,z)=r2f(z). Absolute residuals are used to check the efficiency and consistency of HAM. Other analytical techniques are compared with the present work. It is shown that results of good agreement can be obtained by choosing a suitable value of convergence control parameterhin the valid regionRh. The influence of different parameters on the flow is argued theoretically as well as graphically.


Author(s):  
Khalid Suliman Aboodh ◽  
Abu baker Ahmed

In this paper, an attempt has been made to obtain the solution of linear and nonlinear fractional differential equations by applying an analytic technique, namely the homotopy analysis method (HAM). The fractional derivatives are described by Caputo’s sense. By this method, the solution considered as the sum of an infinite series, which converges rapidly to exact solution with the help of the nonzero convergence control parameter ℏ. Some examples are given to show the efficiently and accurate of this method. The solutions obtained by this method has been compared with exact solution. Also our graphical represented of the solutions have been given by using MATLAB software.


2010 ◽  
Vol 65 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Mahnaz Ashtiani ◽  
Esmail Babolian

An analytic technique, the homotopy analysis method (HAM), is applied to obtain the kink solution of the Sharma-Tasso-Olver equation. The homotopy analysis method is one of the analytic methods and provides us with a new way to obtain series solutions of such problems. HAM contains the auxiliary parameter ħwhich gives us a simple way to adjust and control the convergence region of series solution. “Due to this reason, it seems reasonable to rename ħthe convergence-control parameter” [1].


Sign in / Sign up

Export Citation Format

Share Document