scholarly journals A Matlab software for approximate solution of 2D elliptic problems by means of the meshless Monte Carlo random walk method

2019 ◽  
Vol 83 (2) ◽  
pp. 565-591
Author(s):  
Sławomir Milewski
2021 ◽  
Vol 538 ◽  
pp. 148154
Author(s):  
Dina Kania ◽  
Robiah Yunus ◽  
Rozita Omar ◽  
Suraya Abdul Rashid ◽  
Badrul Mohamed Jan ◽  
...  

1985 ◽  
Vol 83 (3) ◽  
pp. 1382-1391 ◽  
Author(s):  
I. NoorBatcha ◽  
Lionel M. Raff ◽  
Donald L. Thompson

UVserva ◽  
2018 ◽  
Author(s):  
Gerardo Mario Ortigoza Capetillo

Este trabajo presenta la revisión de algunos modelos que conocemos como determinísticos o como estocásticos, así como algunas relaciones entre ellos, las cuales resultan interesantes. Vemos cómo las caminatas aleatorias generan algunas ecuaciones diferenciales parciales tales como la ecuación de calor; se presenta la ecuación de Laplace resuelta usando el juego Tour du wino; es decir, simulación Montecarlo para obtener los valores de una función armónica, como los promedios de su valores en la frontera obtenidos por diferentes trayectorias. Se revisan los modelos de Black and Scholes, así como el método de funciones generadoras de probabilidad para mostrar como determinados problemas probabilísticos pueden resolverse usando métodos determinísticos basados en ecuaciones diferenciales ordinarias y parciales.Palabras clave: modelos determinísticos, modelos probabilísticos, Montecarlo, caminatas aleatorias, Black and ScholesAbstract This work presents a review of some deterministic and stochastic models, interesting rela­tionships between them, are also discussed. Random walks give rise to partial differential mo­dels such as the heat equation. A Tour du wino game is introduced to approximate a solution to Laplace equation, here a Monte Carlo simulation is used to obtain the values of an harmonic function as the average of its boundary values using random trajectories. We review the Black & Scholes and the probability generating functions models to show how some probabilistic pro­blems can be solved using deterministics methods (based on ordinary and partial differential equations).Keywords: BDeterministic models; Stochastic models; Monte Carlo; random walk; Black and Scholes


2017 ◽  
Vol 36 (2) ◽  
pp. 1-34 ◽  
Author(s):  
Ming Liu ◽  
Lei Chen ◽  
Bingquan Liu ◽  
Guidong Zheng ◽  
Xiaoming Zhang

Sign in / Sign up

Export Citation Format

Share Document