Entanglement dynamics of a dispersive system of two driven qubits localized in coherently two linked optical cavities: two dispersive spatial distant driven Jaynes–Cummings cells

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
S. A. Hanoura ◽  
M. M. A. Ahmed ◽  
E. M. Khalil ◽  
A.-S. F. Obada
2021 ◽  
pp. 1-11
Author(s):  
Mehrad Gavahi ◽  
Hong Rong Li

In this work, a model of optomechanical system was investigated by analyzing the entanglement dynamics of two related mechanical oscillators in a modified system. Geometrical shapes effects of optical cavities on entanglement of a representative optomechanical system were investigated by means of performing numerical analysis. It was signified that the steady-state or the dynamic behavior of optomechanical engagement could be created owing to the strength of mechanical pairs, which are strong towards the oscillating temperature. In addition, the mentioned entanglement dynamics were seen to be entirely related to the natural state’s stability. Furthermore, rendering the mechanical damping effects, the critical mechanical coupling strength-related analytical expression, where the transition from a steady state to a dynamic clamp occurs, was reported. In the studied system, two identical mechanical oscillators were formed in different conditions of the optical cavities shapes.


2020 ◽  
Vol 53 (12) ◽  
pp. 125501
Author(s):  
Yusui Chen ◽  
Quanzhen Ding ◽  
Wufu Shi ◽  
Jing Jun ◽  
Ting Yu

2020 ◽  
Author(s):  
Mrittunjoy Guha Majumdar

In this paper, the statistics of excitation-tangles in a postulated background ideal-superfluid field is studied. The structure of the Standard Model is derived in terms of tangle vortex-knots and soliton. Gravity is observed in terms of torsion and curvature in the continuum. In this way, non-linear dynamics and excitations give rise to a unified field theory as well as a Theory of Everything. As a result of this unification, spacetime and matter are shown to be fundamentally equivalent, while gauge fields arise from reorientation and excitations of the the fundamental underlying field. Finally, the equivalence of topological and quantum entanglement is explored to posit a theory of everything in terms of long- and short-range entanglement between fundamental quantum units (bits) of information.


1987 ◽  
Author(s):  
D. M. Ross ◽  
C. Brune ◽  
C. D. Marrs
Keyword(s):  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

Both rich fundamental physics of microcavities and their intriguing potential applications are addressed in this book, oriented to undergraduate and postgraduate students as well as to physicists and engineers. We describe the essential steps of development of the physics of microcavities in their chronological order. We show how different types of structures combining optical and electronic confinement have come into play and were used to realize first weak and later strong light–matter coupling regimes. We discuss photonic crystals, microspheres, pillars and other types of artificial optical cavities with embedded semiconductor quantum wells, wires and dots. We present the most striking experimental findings of the recent two decades in the optics of semiconductor quantum structures. We address the fundamental physics and applications of superposition light-matter quasiparticles: exciton-polaritons and describe the most essential phenomena of modern Polaritonics: Physics of the Liquid Light. The book is intended as a working manual for advanced or graduate students and new researchers in the field.


2021 ◽  
Vol 154 (9) ◽  
pp. 094113
Author(s):  
Tor S. Haugland ◽  
Christian Schäfer ◽  
Enrico Ronca ◽  
Angel Rubio ◽  
Henrik Koch

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Kaelan Donatella ◽  
Alberto Biella ◽  
Alexandre Le Boité ◽  
Cristiano Ciuti

Sign in / Sign up

Export Citation Format

Share Document