How passive is passive listening? Toward a sensorimotor theory of auditory perception

2019 ◽  
Vol 19 (4) ◽  
pp. 619-651 ◽  
Author(s):  
Tom Froese ◽  
Ximena González-Grandón
2020 ◽  
Author(s):  
Qian Wang ◽  
Lu Luo ◽  
Na Xu ◽  
Jing Wang ◽  
Yayue Gao ◽  
...  

ABSTRACTThe human auditory sensory area, which includes primary and non-primary auditory cortices, has been considered to locate in the supra-temporal lobe for more than a century. Recently, accumulating evidence shows that the posterior part of insula responses to sounds under non-task states with relevant short latencies. However, whether posterior insula (InsP) contribute to forming auditory sensation remains unclear. Here we addressed this issue by recording and stimulation directly on the supra-temporal and insular areas via intracranial electrodes from 53 epileptic patients. During passive listening to a non-speech sound, the high-γ (60-140 Hz) active rate of InsP (68.8%) was approximate to the non-primary auditory areas (72.4% and 79.0%). Moreover, we could not distinguish InsP from supra-temporal subareas by either activation, latency, temporal pattern or lateral dominance of sound induce high-γ. On the contrary, direct electrical stimulation evoked auditory sensations effectively on supra-temporal subareas (> 65%), while sparsely on InsP (9.49%). The results of cortico-cortical evoked potentials (CCEPs) showed strong bidirectional connectivity within supra-temporal areas, but weak connectivity between supra-temporal areas and InsP. These findings suggest that even the InsP has similar basic auditory response properties to the primary or non-primary cortex, it may not directly participate in the formation of auditory perception.


1973 ◽  
Vol 16 (3) ◽  
pp. 482-487 ◽  
Author(s):  
June D. Knafle

One hundred and eighty-nine kindergarten children were given a CVCC rhyming test which included four slightly different types of auditory differentiation. They obtained a greater number of correct scores on categories that provided maximum contrasts of final consonant sounds than they did on categories that provided less than maximum contrasts of final consonant sounds. For both sexes, significant differences were found between the categories; although the sex differences were not significant, girls made more correct rhyming responses than boys on the most difficult category.


Author(s):  
Rachel L. C. Mitchell ◽  
Rachel A. Kingston

It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.


1991 ◽  
Vol 36 (10) ◽  
pp. 839-840
Author(s):  
William A. Yost
Keyword(s):  

2021 ◽  
Vol 213 ◽  
pp. 103219
Author(s):  
Clémence Bonnet ◽  
Bénédicte Poulin-Charronnat ◽  
Patrick Bard ◽  
Carine Michel

2021 ◽  
Vol 11 (3) ◽  
pp. 1150
Author(s):  
Stephan Werner ◽  
Florian Klein ◽  
Annika Neidhardt ◽  
Ulrike Sloma ◽  
Christian Schneiderwind ◽  
...  

For a spatial audio reproduction in the context of augmented reality, a position-dynamic binaural synthesis system can be used to synthesize the ear signals for a moving listener. The goal is the fusion of the auditory perception of the virtual audio objects with the real listening environment. Such a system has several components, each of which help to enable a plausible auditory simulation. For each possible position of the listener in the room, a set of binaural room impulse responses (BRIRs) congruent with the expected auditory environment is required to avoid room divergence effects. Adequate and efficient approaches are methods to synthesize new BRIRs using very few measurements of the listening room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. Retrieving and processing the tracking data of the listener’s head-pose and position as well as convolving BRIRs with an audio signal needs to be done in real-time. This contribution presents work done by the authors including several technical components of such a system in detail. It shows how the single components are affected by psychoacoustics. Furthermore, the paper also discusses the perceptive effect by means of listening tests demonstrating the appropriateness of the approaches.


Sign in / Sign up

Export Citation Format

Share Document