scholarly journals Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite

2013 ◽  
Vol 84 (1-2) ◽  
pp. 203-226 ◽  
Author(s):  
Hsiang-Yin Lin ◽  
Jhun-Chen Chen ◽  
Miao-Ju Wei ◽  
Yi-Chen Lien ◽  
Huang-Hsien Li ◽  
...  
Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 120
Author(s):  
Yijie Li ◽  
Song Chen ◽  
Yuhang Liu ◽  
Haijiao Huang

Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during the plant’s growth and development. This analysis provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula Roth. Background and Objectives: The cell cycle factors not only influence cell cycles progression together, but also regulate accretion, division, and differentiation of cells, and then regulate growth and development of the plant. In this study, we identified the putative cell cycle genes in the B. pendula genome, based on the annotated cell cycle genes in Arabidopsis thaliana (L.) Heynh. It can be used as a basis for further functional research. Materials and Methods: RNA-seq technology was used to determine the transcription abundance of all cell cycle genes in xylem, roots, leaves, and floral tissues. Results: We identified 59 cell cycle gene models in the genome of B. pendula, with 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1, and BpWEE1. Conclusions: By combining phylogenetic analysis and tissue-specific expression data, we identified 17 core cell cycle genes in the Betulapendula genome.


2003 ◽  
Vol 2 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Sunil Singhal ◽  
Kunjilata Amin ◽  
Robert Kruklitis ◽  
Peter DeLong ◽  
Michael E. Friscia ◽  
...  

2004 ◽  
Vol 22 (3) ◽  
pp. 589-597 ◽  
Author(s):  
Steven Robbens ◽  
Basheer Khadaroo ◽  
Alain Camasses ◽  
Evelyne Derelle ◽  
Conchita Ferraz ◽  
...  

Author(s):  
Yijie Li ◽  
Song Chen ◽  
Yuhang Liu ◽  
Haijiao Huang

Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during plant growth and development. This provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula. Background and Objectives: The cell cycle factors not only influence cell cycle progression together, but also regulate accretion, division and differentiation of cells, and then regulate growth and development of plant. In this study, we identified the putative cell cycle genes in B. pendula genome, based on the annotated cell cycle genes in A. thaliana. It could serve as a foundation for further functional studies. Materials and Methods: The transcript abundance was determined for all the cell cycle genes in xylem, root, leaf and flower tissues using RNA-seq technology. Results: We identified 59cell cycle gene models in the genome of B. pendula, 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1 and BpWEE1. Conclusions: We identified 17 core cell cycle genes in the genome of birch by combining phylogenetic analysis and tissue specific expression data.


Sign in / Sign up

Export Citation Format

Share Document