The legacy of climate change effects: previous drought increases short-term litter decomposition rates in a temperate mixed grass- and shrubland

2016 ◽  
Vol 408 (1-2) ◽  
pp. 183-193 ◽  
Author(s):  
Merian Skouw Haugwitz ◽  
Anders Michelsen ◽  
Anders Priemé
2012 ◽  
Vol 367 (1605) ◽  
pp. 3025-3032 ◽  
Author(s):  
David Ott ◽  
Björn C. Rall ◽  
Ulrich Brose

Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO 2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator–prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.


2020 ◽  
Author(s):  
Miguel Berdugo ◽  
Dinorah O. Mendoza-Aguilar ◽  
Ana Rey ◽  
Victoria Ochoa ◽  
Beatriz Gozalo ◽  
...  

AbstractDespite the high relevance of communities dominated by lichens, mosses and cyanobacteria living on the soil surface (biocrusts) for ecosystem functioning in drylands worldwide, no study to date has investigated the decomposition of biocrust-forming lichen litter in situ. Thus, we do not know whether the drivers of its decomposition are similar to those for plant litter (e.g., importance of abiotic degradation through UV radiation), the magnitude of lichen decomposition rates and whether they will be affected by climate change. Here we report results from a litter decomposition experiment carried out with two biocrust-forming lichens (Diploschistes diacapsis and Cladonia convoluta) in central Spain. We evaluated how lichen decomposition was affected by warming, rainfall exclusion and the combination of both. We also manipulated the incidence of UV radiation using mesh material that blocked 10% or 90% of incoming UV radiation. Our results indicate that lichens decompose as fast as some plants typical of the region (k~0.3) and that the chemical composition of their thallus drives litter decomposition rates. Warming increased decomposition rates of both lichen species, and mediated the effects of photodegradation. While UV exposure accelerated the decomposition of D. diacapsis, it slowed down that of C. convoluta. Our results indicate that biocrust-forming lichens can decompose in the field at a rate similar to that of vascular plants, and that this process will be affected by warming. Our findings further highlight the need of incorporating biocrusts into carbon cycling models to better understand and forecast climate change impacts on terrestrial biogeochemistry.


2018 ◽  
Vol 115 (32) ◽  
pp. E7541-E7549 ◽  
Author(s):  
Amanda M. Koltz ◽  
Aimée T. Classen ◽  
Justin P. Wright

Predators can disproportionately impact the structure and function of ecosystems relative to their biomass. These effects may be exacerbated under warming in ecosystems like the Arctic, where the number and diversity of predators are low and small shifts in community interactions can alter carbon cycle feedbacks. Here, we show that warming alters the effects of wolf spiders, a dominant tundra predator, on belowground litter decomposition. Specifically, while high densities of wolf spiders result in faster litter decomposition under ambient temperatures, they result, instead, in slower decomposition under warming. Higher spider densities are also associated with elevated levels of available soil nitrogen, potentially benefiting plant production. Changes in decomposition rates under increased wolf spider densities are accompanied by trends toward fewer fungivorous Collembola under ambient temperatures and more Collembola under warming, suggesting that Collembola mediate the indirect effects of wolf spiders on decomposition. The unexpected reversal of wolf spider effects on Collembola and decomposition suggest that in some cases, warming does not simply alter the strength of top-down effects but, instead, induces a different trophic cascade altogether. Our results indicate that climate change-induced effects on predators can cascade through other trophic levels, alter critical ecosystem functions, and potentially lead to climate feedbacks with important global implications. Moreover, given the expected increase in wolf spider densities with climate change, our findings suggest that the observed cascading effects of this common predator on detrital processes could potentially buffer concurrent changes in decomposition rates.


Author(s):  
Liesbeth van den Brink ◽  
Rafaella Canessa ◽  
Maaike Bader ◽  
Harald Neidhardt ◽  
Yvonne Oelmann ◽  
...  

Litter decomposition, a key component of the global carbon cycle, is greatly affected by climate. Unfortunately, our current understanding of climate-change effects on decomposition stems mainly from space-for-time studies along climate gradients, where biotic and climatic effects on litter decomposition are confounded. Experimental studies separating indirect from direct climate effects are needed that test the validity of the space-for-time approach. Here, we combined large- and small scale reciprocal litter translocations, in situ precipitation manipulation, and a prominent climate gradient for studying drought effects on litter decomposition. Interestingly, all experiments indicated clear positive effects of precipitation on decomposition, but the space-for-time approach indicated the opposite, due to indirect climate effects on litter quality. This indicates that space cannot substitute for time and highlights the need for experimental evidence in litter decomposition studies. Such evidence would improve predictions of models of the global carbon cycle that include interactions between climate and vegetation.


2019 ◽  
Vol 14 (4) ◽  
pp. 222-229
Author(s):  
Antonio Berti ◽  
Carmelo Maucieri ◽  
Alessandra Bonamano ◽  
Maurizio Borin

This study evaluates the response of maize growing cycle length to meteorological variables at regional scale particularly, in the short-term period, considering global climate change. The experiment was carried out in Veneto Region (Northeast Italy) where maize phenological data collected by the regional network from 2005 to 2007 were combined with temperature data to analyse the relationship between BBCH stages and thermal sum. The effects of climatic changes in the near and medium term on maize phenology and on water requirements were also evaluated over a grid of climatic data obtained from different climatic models. The piecewise analysis gave the best fitting between BBCH and Growing Degree Days observed data characterized by two lines with different slopes with BBCH 70 (beginning of fruit development) as changing stage. The angular coefficient of the first line was 2.6 times than the second one (0.028) suggesting that the early stages of the growing cycle are more sensitive to air temperature. The simulation of maize phenology evolution highlights a modest variation at the 2020-time horizon, while an expected reduction of maize growing cycle of about 10 days has been estimated for 2030-time horizon. Long-term phenological observation are desirable to confirm our findings and to improve the strength of dataset.


2015 ◽  
Vol 393 (1-2) ◽  
pp. 69-82 ◽  
Author(s):  
Mathieu Santonja ◽  
Catherine Fernandez ◽  
Thierry Gauquelin ◽  
Virginie Baldy

Sign in / Sign up

Export Citation Format

Share Document