Generation of Uniformly Closed Algebras of Functions

Positivity ◽  
2005 ◽  
Vol 9 (1) ◽  
pp. 81-95 ◽  
Author(s):  
M. Isabel Garrido ◽  
Francisco Montalvo
Keyword(s):  
1994 ◽  
Vol 05 (02) ◽  
pp. 201-212 ◽  
Author(s):  
HERBERT KAMOWITZ ◽  
STEPHEN SCHEINBERG

Many commutative semisimple Banach algebras B including B = C (X), X compact, and B = L1 (G), G locally compact, have the property that every homomorphism from B into C1[0, 1] is compact. In this paper we consider this property for uniform algebras. Several examples of homomorphisms from somewhat complicated algebras of analytic functions to C1[0, 1] are shown to be compact. This, together with the fact that every homomorphism from the disc algebra and from the algebra H∞ (∆), ∆ = unit disc, to C1[0, 1] is compact, led to the conjecture that perhaps every homomorphism from a uniform algebra into C1[0, 1] is compact. The main result to which we devote the second half of this paper, is to construct a compact Hausdorff space X, a uniformly closed subalgebra [Formula: see text] of C (X), and an arc ϕ: [0, 1] → X such that the transformation T defined by Tf = f ◦ ϕ is a (bounded) homomorphism of [Formula: see text] into C1[0, 1] which is not compact.


2009 ◽  
Vol 32 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Osamu HATORI ◽  
Takeshi MIURA ◽  
Hirokazu OKA ◽  
Hiroyuki TAKAGI

1975 ◽  
Vol 18 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the complexvalued continuous functions on X. We say A is a function algebra on X if A is a point separating, uniformly closed subalgebra of C(X) containing the constant functions. Equipped with the sup-norm ‖f‖ = sup{|f(x)|: x ∊ X} for f ∊ A, A is a Banach algebra. Let MA denote the maximal ideal space.Let D be the closed unit disk in C and let U be the open unit disk. We call A(D)={f ∊ C(D):f is analytic on U} the disk algebra. Let T be the unit circle and set C1(T) = {f ∊ C(T): f'(t) ∊ C(T)}.


1957 ◽  
Vol 9 ◽  
pp. 435-442
Author(s):  
J. A. Schatz

In 1943 Gelfand and Neumark (3) characterized uniformly closed self-adjoint algebras of bounded operators on a Hilbert space as Banach algebras with an involution (a conjugate linear anti-isomorphism of period two) satisfying several additional conditions. The main purpose of this paper is to point out that if we consider algebras of bounded operators on complex Banach spaces more general than Hilbert space, then we can represent a larger class of algebras by essentially the same methods.


1992 ◽  
Vol 46 (3) ◽  
pp. 449-458 ◽  
Author(s):  
H. Linda Byun ◽  
Lothar Redlin ◽  
Saleem Watson

It is known that the maximal ideals in the rings C(X) and C*(X) of continuous and bounded continuous functions on X, respectively, are in one-to-one correspondence with βX. We have shown previously that the same is true for any ring A(X) between C(X) and C*(X). Here we consider the problem for rings A(X) contained in C*(X) which are complete rings of functions (that is, they contain the constants, separate points and closed sets, and are uniformly closed). For every noninvertible f ∈ A(X), we define a z–filter ZA(f) on X which, in a sense, provides a measure of where f is ‘locally invertible’. We show that the map ZA generates a correspondence between ideals of A(X) and z–filters on X. Using this correspondence, we construct a unique compactification of X for every complete ring of functions. Each such compactification is explicitly identified as a quotient of βX. In fact, every compactification of X arises from some complete ring of functions A(X) via this construction. We also describe the intersections of the free ideals and of the free maximal ideals in complete rings of functions.


1971 ◽  
Vol 17 (3) ◽  
pp. 201-214 ◽  
Author(s):  
G. Brown ◽  
J.D. Pryce

We are concerned with the stability properties of uniformly closed wedges in C(E) (resp. C+(E)), the real-valued (resp. non-negative) continuous functionson a compact space E, and solve the following problems in this area:(a) Let A be a closed semi-algebra in C+(E) such that


1970 ◽  
Vol 22 (5) ◽  
pp. 1002-1004 ◽  
Author(s):  
Robert G. Blumenthal

In this paper we prove that the proper Dirichlet subalgebras of the disc algebra discovered by Browder and Wermer [1] are maximal subalgebras of the disc algebra (Theorem 2). We also give an extension to general function algebras of a theorem of Rudin [4] on the existence of maximal subalgebras of C(X). Theorem 1 implies that every function algebra defined on an uncountable metric space has a maximal subalgebra.A function algebra A on X is a uniformly closed, point-separating subalgebra of C(X), containing the constants, where X is a compact Hausdorff space. If A and B are function algebras on X, A ⊂ B, A ≠ B, we say A is a maximal subalgebra of B if whenever C is a function algebra on X with A ⊂ C ⊂ B, either C = A or C = B.


Sign in / Sign up

Export Citation Format

Share Document