scholarly journals Local invertibility in subrings of C*(X)

1992 ◽  
Vol 46 (3) ◽  
pp. 449-458 ◽  
Author(s):  
H. Linda Byun ◽  
Lothar Redlin ◽  
Saleem Watson

It is known that the maximal ideals in the rings C(X) and C*(X) of continuous and bounded continuous functions on X, respectively, are in one-to-one correspondence with βX. We have shown previously that the same is true for any ring A(X) between C(X) and C*(X). Here we consider the problem for rings A(X) contained in C*(X) which are complete rings of functions (that is, they contain the constants, separate points and closed sets, and are uniformly closed). For every noninvertible f ∈ A(X), we define a z–filter ZA(f) on X which, in a sense, provides a measure of where f is ‘locally invertible’. We show that the map ZA generates a correspondence between ideals of A(X) and z–filters on X. Using this correspondence, we construct a unique compactification of X for every complete ring of functions. Each such compactification is explicitly identified as a quotient of βX. In fact, every compactification of X arises from some complete ring of functions A(X) via this construction. We also describe the intersections of the free ideals and of the free maximal ideals in complete rings of functions.

2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Amrita Acharyya ◽  
Sudip Kumar Acharyya ◽  
Sagarmoy Bag ◽  
Joshua Sack

<p>For a completely regular Hausdorff topological space X, let C(X, C) be the ring of complex-valued continuous functions on X, let C ∗ (X, C) be its subring of bounded functions, and let Σ(X, C) denote the collection of all the rings that lie between C ∗ (X, C) and C(X, C). We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/z-ideals/z ◦ -ideals in the rings P(X, C) in Σ(X, C) and in their real-valued counterparts P(X, C) ∩ C(X). These correlations culminate to the fact that the structure space of any such P(X, C) is βX. For any ideal I in C(X, C), we observe that C ∗ (X, C)+I is a member of Σ(X, C), which is further isomorphic to a ring of the type C(Y, C). Incidentally these are the only C-type intermediate rings in Σ(X, C) if and only if X is pseudocompact. We show that for any maximal ideal M in C(X, C), C(X, C)/M is an algebraically closed field, which is furthermore the algebraic closure of C(X)/M ∩C(X). We give a necessary and sufficient condition for the ideal CP (X, C) of C(X, C), which consists of all those functions whose support lie on an ideal P of closed sets in X, to be a prime ideal, and we examine a few special cases thereafter. At the end of the article, we find estimates for a few standard parameters concerning the zero-divisor graphs of a P(X, C) in Σ(X, C).</p>


1978 ◽  
Vol 21 (2) ◽  
pp. 165-172
Author(s):  
Shankar Hegde

AbstrctV. S. Varadarajan has classified the bounded linear functional on the algebra C(X) of bounded continuous functions on a topological space X, according to the properties of their smoothness and related this classification to the corresponding natural classification of finitely additive regular measures on the zero sets of X. In this paper, some of these results are extended to the linear functionals on an arbitrary uniformly closed algebra A of bounded functions on a set X.


2021 ◽  
Vol 7 (1) ◽  
pp. 88-99
Author(s):  
Zanyar A. Ameen

AbstractThe notions of almost somewhat near continuity of functions and near regularity of spaces are introduced. Some properties of almost somewhat nearly continuous functions and their connections are studied. At the end, it is shown that a one-to-one almost somewhat nearly continuous function f from a space X onto a space Y is somewhat nearly continuous if and only if the range of f is nearly regular.


2013 ◽  
Vol 31 (2) ◽  
pp. 191
Author(s):  
Chinnapazham Santhini ◽  
M. Lellis Thivagar

In this paper,we introduce and investigate the notions of Iˆω -closed sets andI ˆω -continuous functions,maximal Iˆω -closed sets and maximal Iˆω -continuous functionsin ideal topological spaces.We also introduce a new class of spaces calledMTˆω -spaces.


1996 ◽  
Vol 19 (2) ◽  
pp. 303-310 ◽  
Author(s):  
J. Dontchev

In 1989 Ganster and Reilly [6] introduced and studied the notion ofLC-continuous functions via the concept of locally closed sets. In this paper we consider a stronger form ofLC-continuity called contra-continuity. We call a functionf:(X,τ)→(Y,σ)contra-continuous if the preimage of every open set is closed. A space(X,τ)is called stronglyS-closed if it has a finite dense subset or equivalently if every cover of(X,τ)by closed sets has a finite subcover. We prove that contra-continuous images of stronglyS-closed spaces are compact as well as that contra-continuous,β-continuous images ofS-closed spaces are also compact. We show that every stronglyS-closed space satisfies FCC and hence is nearly compact.


2009 ◽  
Vol 32 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Osamu HATORI ◽  
Takeshi MIURA ◽  
Hirokazu OKA ◽  
Hiroyuki TAKAGI

1979 ◽  
Vol 31 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Seki A. Choo

In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.


Sign in / Sign up

Export Citation Format

Share Document