scholarly journals Ergodicity and Kolmogorov Equations for Dissipative SPDEs with Singular Drift: a Variational Approach

2018 ◽  
Vol 52 (1) ◽  
pp. 69-103 ◽  
Author(s):  
Carlo Marinelli ◽  
Luca Scarpa
2018 ◽  
Vol 46 (3) ◽  
pp. 1455-1497 ◽  
Author(s):  
Carlo Marinelli ◽  
Luca Scarpa

2018 ◽  
Vol 482 (4) ◽  
pp. 369-374
Author(s):  
V. Bogachev ◽  
◽  
M. Roeckner ◽  
S. Shaposhnikov ◽  
◽  
...  

Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


Author(s):  
Mark A. Peletier ◽  
D. R. Michiel Renger

AbstractWe study the convergence of a sequence of evolution equations for measures supported on the nodes of a graph. The evolution equations themselves can be interpreted as the forward Kolmogorov equations of Markov jump processes, or equivalently as the equations for the concentrations in a network of linear reactions. The jump rates or reaction rates are divided in two classes; ‘slow’ rates are constant, and ‘fast’ rates are scaled as $$1/\epsilon $$ 1 / ϵ , and we prove the convergence in the fast-reaction limit $$\epsilon \rightarrow 0$$ ϵ → 0 . We establish a $$\Gamma $$ Γ -convergence result for the rate functional in terms of both the concentration at each node and the flux over each edge (the level-2.5 rate function). The limiting system is again described by a functional, and characterises both fast and slow fluxes in the system. This method of proof has three advantages. First, no condition of detailed balance is required. Secondly, the formulation in terms of concentration and flux leads to a short and simple proof of the $$\Gamma $$ Γ -convergence; the price to pay is a more involved compactness proof. Finally, the method of proof deals with approximate solutions, for which the functional is not zero but small, without any changes.


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractWe present a novel approach to topology optimization based on thermodynamic extremal principles. This approach comprises three advantages: (1) it is valid for arbitrary hyperelastic material formulations while avoiding artificial procedures that were necessary in our previous approaches for topology optimization based on thermodynamic principles; (2) the important constraints of bounded relative density and total structure volume are fulfilled analytically which simplifies the numerical implementation significantly; (3) it possesses a mathematical structure that allows for a variety of numerical procedures to solve the problem of topology optimization without distinct optimization routines. We present a detailed model derivation including the chosen numerical discretization and show the validity of the approach by simulating two boundary value problems with large deformations.


Sign in / Sign up

Export Citation Format

Share Document