Geometry and dynamics of one-norm geometric quantum discord

2015 ◽  
Vol 15 (1) ◽  
pp. 301-326 ◽  
Author(s):  
Zhiming Huang ◽  
Daowen Qiu ◽  
Paulo Mateus
2021 ◽  
Author(s):  
Fadwa Benabdallah ◽  
Hamid Arian Zad ◽  
Mohammed Daoud ◽  
Nerses S Ananikian

Abstract We study the dimensionless time evolution of the logarithmic negativity and geometric quantum discord of a qubit-qutrit XXX spin model under the both Markovian and non-Markovian noise channels. We find that at a special temperature interval the quantum entanglement based on the logarithmic negativity reveals entanglement sudden deaths together with revivals. The revival phenomenon is due to the non-Markovianity resulting from the feedback effect of the environment. At high temperatures, the scenario of death and revival disappears. The geometric quantum discord evolves alternatively versus time elapsing with damped amplitudes until the system reaches steady state. It is demonstrated that the dynamics of entanglement negativity undergoes substantial changes by varying temperature, and it is much more fragile against the temperature rather than the geometric quantum discord. The real complex heterodinuclear [Ni(dpt (H2O)Cu(pba)]·2H2O [with pba =1,3-propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine] is an experimental representative of our considered bipartite qubit-qutrit system that may show remarkable entanglement deaths and revivals at relatively high temperatures and high magnetic field that is comparable with the strength of the exchange interaction J between Cu+2 and Ni+2 ions, i.e., kBT ≈ J and μBB ≈ J.


2018 ◽  
Vol 57 (5) ◽  
pp. 1471-1478
Author(s):  
You-neng Guo ◽  
Zhen-ke Liu ◽  
Qing-long Tian ◽  
Gang-lin Zhang ◽  
Guo-you Wang ◽  
...  

2017 ◽  
Vol 31 (23) ◽  
pp. 1750166 ◽  
Author(s):  
R. Muthuganesan ◽  
R. Sankaranarayanan

In this paper, we investigate nonlocal correlation (beyond entanglement) captured by measurement induced nonlocality and geometric quantum discord for a pair of interacting spin-1/2 particles at thermal equilibrium. It is shown that both the measures are identical in measuring the correlation. We show that nonlocal correlation between the spins exist even without entanglement and the correlation vanishes only for maximal mixture of product bases. We also observe that while interaction between the spins is responsible for enhancement of correlation, this non-classicality decreases with the intervention of external magnetic field.


2016 ◽  
Vol 374 ◽  
pp. 237-246 ◽  
Author(s):  
Chang-Cheng Cheng ◽  
Yao Wang ◽  
Jin-Liang Guo

Author(s):  
Arapat Ablimit ◽  
Dildar Hitjan ◽  
Ahmad Abliz

AbstractIn this paper, we study the geometric quantum discord dynamics of the double quantum dot charge qubit in the non-Markovian environment. We apply the non-perturbative non-Markovian quantum state diffusion method to obtain the exact master equation of the double quantum dot system coupled to two independent non-zero temperature electronic baths. Then, we use this master equation to investigate the effects of non-Markovianity, inter-dot coupling strength and bath temperature on the dynamics of geometric quantum discord. Our studies show that the geometric quantum discord of a double quantum dot system can be modified and enhanced in some cases via these factors.


2012 ◽  
Vol 45 (11) ◽  
pp. 115308 ◽  
Author(s):  
Jia-sen Jin ◽  
Feng-yang Zhang ◽  
Chang-shui Yu ◽  
He-shan Song

2013 ◽  
Vol 27 (24) ◽  
pp. 1350136 ◽  
Author(s):  
TAO WU ◽  
XUE-KE SONG ◽  
LIU YE

The dynamics of geometric discord (GD) and its transfer in a dissipative system consisting of two independent atom-cavity-reservoir subsystems under the strong coupling and the weak coupling regimes is studied. It is shown that the GD of the atoms and the cavities oscillatorily decays to zero while the reservoirs begin to present nonzero geometric quantum discord already immediately after t = 0 in the strong coupling regime. However, in the weak coupling regime, the GD between the atoms progressively decays becoming zero and the discord between the reservoirs arises from zero to a steady value, while the cavities remain almost uncorrelated during the evolution. We also show that the amount of GD contained in atoms and reservoirs depends on the purity p and it is proportional to p, the smaller the value of p the smaller the amount of GD. It is worth noting that, in both strong coupling and the weak coupling regimes, the results show that GD initially stored in the atoms will eventually be completely transferred to the reservoirs, independent of the parameters, but the transfer is mediated via the cavities in the strong coupling regime, while it is almost directly in the weak coupling regime.


2015 ◽  
Vol 362 ◽  
pp. 795-804 ◽  
Author(s):  
Ming-Liang Hu ◽  
Han-Li Lian

Sign in / Sign up

Export Citation Format

Share Document