scholarly journals Continuous variable direct secure quantum communication using Gaussian states

2020 ◽  
Vol 19 (4) ◽  
Author(s):  
S. Srikara ◽  
Kishore Thapliyal ◽  
Anirban Pathak
2019 ◽  
Vol 17 (04) ◽  
pp. 1950035
Author(s):  
Liang Liu ◽  
Xiaofei Qi ◽  
Jinchuan Hou

We propose a measure of nonclassical correlation [Formula: see text] in terms of local Gaussian unitary operations based on square of the fidelity [Formula: see text] for bipartite continuous-variable systems. This quantity is easier to be calculated or estimated and is a remedy for the local ancilla problem associated with the geometric measurement-induced nonlocality. A simple computation formula of [Formula: see text] for any [Formula: see text]-mode Gaussian states is presented and an estimation of [Formula: see text] for any [Formula: see text]-mode Gaussian states is given. For any [Formula: see text]-mode Gaussian states, [Formula: see text] does not increase after performing a local Gaussian channel on the unmeasured subsystem. Comparing [Formula: see text] in scale with other quantum correlations such as Gaussian geometric discord for two-mode symmetric squeezed thermal states reveals that [Formula: see text] is much better in detecting quantum correlations of Gaussian states.


2011 ◽  
Vol 09 (07n08) ◽  
pp. 1773-1786 ◽  
Author(s):  
GERARDO ADESSO ◽  
DAVIDE GIROLAMI

We extend the geometric measure of quantum discord, introduced and computed for two-qubit states, to quantify non-classical correlations in composite Gaussian states of continuous variable systems. We lay the formalism for the evaluation of a Gaussian geometric discord in two-mode Gaussian states, and present explicit formulas for the class of two-mode squeezed thermal states. In such a case, under physical constraints of bounded mean energy, geometric discord is shown to admit upper and lower bounds for a fixed value of the conventional (entropic) quantum discord. We finally discuss alternative geometric approaches to quantify Gaussian quadrature correlations.


2005 ◽  
Vol 12 (02) ◽  
pp. 189-205 ◽  
Author(s):  
Gerardo Adesso ◽  
Alessio Serafini ◽  
Fabrizio Illuminati

Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal (i.e. referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or, in general, by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two-mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1 × N-mode partitions.


2013 ◽  
Vol 30 (6) ◽  
pp. 060302 ◽  
Author(s):  
Jun-Jun Zhao ◽  
Xiao-Min Guo ◽  
Xu-Yang Wang ◽  
Ning Wang ◽  
Yong-Min Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document