Properties of the Circumsolar Plasma Turbulence and Plasma Waves According to the Coronal Sounding Experiments Using Spacecraft Signals

2017 ◽  
Vol 60 (4) ◽  
pp. 259-272 ◽  
Author(s):  
O. I. Yakovlev
1995 ◽  
Vol 05 (C6) ◽  
pp. C6-53-C6-59 ◽  
Author(s):  
A. A. Rukhadze ◽  
K. A. Sarksyan ◽  
N. N. Skvortsova

1972 ◽  
Vol 108 (9) ◽  
pp. 143 ◽  
Author(s):  
Vadim N. Tsytovich
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minjun J. Choi ◽  
Lāszlo Bardōczi ◽  
Jae-Min Kwon ◽  
T. S. Hahm ◽  
Hyeon K. Park ◽  
...  

AbstractMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


Sign in / Sign up

Export Citation Format

Share Document