high frequency plasma
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Alexander J. Lilley ◽  
Subrata Roy ◽  
Miguel R. Visbal

Author(s):  
Toshiaki Makabe

Abstract In a high-frequency capacitively coupled plasma (HF-CCP), few studies have been carried out for the transport of charged particles in the active bulk plasma with high electronegativity. The electric field E(t), specifically, time-varying reduced field E(t)/Ng provides key knowledge about the characteristics of collisional bulk plasma. Numerical modeling is the only method for estimating E(t)/Ng, while a limited number of collision cross sections and related transport parameters are available. Under these circumstances, we discuss how to estimate the reduced field E(t)/Ng, i.e., E(t) in active bulk plasma with high electronegativity in HF-CCP through investigation of the correlation between the DC-critical reduced field (E/Ng)Crit: and the HF-effective reduced field (E(t)/Ng)eff . Our previous discussion on the correlation is validated by increasing the number of results of (E(t)/Ng)eff . The relation between the electronegativity and the ionization degree is derived from the sustainable condition in the bulk plasma.


Author(s):  
Kryštof Mrózek ◽  
Tomáš Dytrych ◽  
Pavel Moliš ◽  
Vladimír Dániel ◽  
Adam Obrusník

Abstract This work presents a global plasma model of a gridded air-breathing electric propulsion concept based on electron-cyclotron resonance plasma operating in the pressure range of 10-3 Pa to 1 Pa. We illustrate that the global plasma model reproduces the experimental measurements of extracted current over two orders of magnitude in pressure. Consequently, we use the model to investigate the theoretical scalability of the plasma source, finding out that the plasma source performance scales reasonably well with the average absorbed power per molecule, even though this scaling factor has its limits. The global model presented in this work is a model of a specific laboratory device and, in future, it can be adapted to very low Earth orbit conditions by adjusting the boundary conditions. The model was implemented using PlasmaSolve p3s-globalmodel software and the configuration file containing all the equations is provided to the community as supplementary material.


2021 ◽  
Author(s):  
Martin Volwerk ◽  

<p>The induced magnetosphere of Venus is created by the interaction of the solar wind and embedded interplanetary magnetic field with the exosphere and ionosphere of Venus. Solar Orbiter entered Venus’s magnetotail far downstream, > 70 Venus radii, of the planet and exited the magnetosphere over the north pole. This offered a unique view of the system over distances that were only flown through once by three other missions before, Mariner 10, Galileo and Bepi-Colombo. The large-scale structure and activity of the induced magnetosphere is studied as well as the high-frequency plasma waves both in the magnetosphere and in a limited region upstream of the planet where interaction with Venus’s exosphere is expected.  It is shown that Venus’s magnetotail is very active during the Solar Orbiter flyby. Structures such as flux ropes, and reconnection sites are encountered as well as a strongly overdraping of the magnetic field downstream of the bow shock and planet. High-frequency plasma waves (up to 6 times the local proton cyclotron frequency) are observed in the magnetotail, which are identified as Doppler-shifted proton cyclotron waves, whereas in the upstream solar wind these waves appear just below the proton cyclotron frequency (as expected) but are very patchy. The bow shock is quasi perpendicular, however, expected mirror mode activity is not found directly behind it; instead there is strong cyclotron wave power. This is most-likely caused by the relatively low plasma-beta  behind the bow shock. Much further downstream in the magnetosheath mirror mode of magnetic hole structures are identified. This presentation will take place after the second Venus flyby by Solar Orbiter and BepiColombo and Solar Orbiter on 9 and 10 August, respectively.</p>


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 637
Author(s):  
Hongliang Li ◽  
Zewen Lin ◽  
Yanqing Guo ◽  
Jie Song ◽  
Rui Huang ◽  
...  

The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.


Author(s):  
Yanhao Luo ◽  
Jun Li ◽  
Hua Liang ◽  
Shanguang Guo ◽  
Mengxiao Tang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 354
Author(s):  
Qianqian Liu ◽  
Xiaoxuan Chen ◽  
Hongliang Li ◽  
Yanqing Guo ◽  
Jie Song ◽  
...  

Luminescent amorphous silicon nitride-containing dense Si nanodots were prepared by using very-high-frequency plasma-enhanced chemical vapor deposition at 250 °C. The influence of thermal annealing on photoluminescence (PL) was studied. Compared with the pristine film, thermal annealing at 1000 °C gave rise to a significant enhancement by more than twofold in terms of PL intensity. The PL featured a nanosecond recombination dynamic. The PL peak position was independent of the excitation wavelength and measured temperatures. By combining the Raman spectra and infrared absorption spectra analyses, the enhanced PL was suggested to be from the increased density of radiative centers related to the Si dangling bonds (K0) and N4+ or N20 as a result of bonding configuration reconstruction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


Sign in / Sign up

Export Citation Format

Share Document