The Influence of TiC Particles on the Structure and Mechanical Properties of Ni3Al Manufactured By Spark Plasma Sintering

2021 ◽  
Vol 63 (9) ◽  
pp. 1583-1589
Author(s):  
D. A. Osipov ◽  
I. V. Smirnov ◽  
K. V. Grinyaev ◽  
I. A. Ditenberg ◽  
M. A. Korchagin
2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850022
Author(s):  
MAOYUAN LI ◽  
LIN LU ◽  
ZHEN DAI ◽  
YIQIANG HONG ◽  
WEIWEI CHEN ◽  
...  

Amorphous Al–Cu–Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10[Formula: see text]mm. The SPS process was conducted at the pressure of 200 and 300[Formula: see text]MPa with the temperature of 653–723[Formula: see text]K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al–Cu–Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al–Ti, Al–Cu and Al–Cu–Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.


Author(s):  
Jeong-Han Lee ◽  
Ik-Hyun Oh ◽  
Ju-Hun Kim ◽  
Sung-Kil Hong ◽  
Hyun-Kuk Park

Abstract Densely consolidated WC-based hard materials with 5–20 vol% ZrSiO4 was fabricated by spark plasma sintering at 1400 ℃ at a constant heating rate of 70 ℃/min−1. To achieve mechanical alloying of WC-ZrSiO4, planetary ball milling was carried out for 12 h, during which the brittle-brittle components (WC-ZrSiO4) became fragmented and their particles became refined. It was observed that certain, specific, non-isothermal sintering kinetics, such as apparent activation energy, sintering exponents, and densification strain, affected the densification behavior. The evolution of phase structure from powder to compact was found to be related the lattice distortion and micro-strain in the basal planes of WC. By examining the mechanical properties of the samples, it was that the added zircon content leads to enhanced fracture toughness (12.9 MPa m1/2) owing to the presence of WC-ZrSiO4 in the cemented carbide. In fact, the microcrack propagation of the fracture passed through zircon from a transgranular to a ductile component (fcc) where the crack tips could be absorbed. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document