scholarly journals Identifying spatial technology clusters from patenting concentrations using heat map kernel density estimation

2020 ◽  
Author(s):  
Pieter E. Stek

AbstractIn this paper a methodology for identifying and delineating spatial technology clusters based on patenting concentration is developed. The methodology involves the automated geocoding of patent inventor addresses, the application of a home bias correction factor and a sensitivity analysis to determine the optimal parameters of the kernel density estimation interpolation distance and the minimum concentration threshold to identify clusters. The methodology’s performance is compared to a number of other cluster identification methods and it is validated across 18 individual sectors, including mature broad-based high-technology sectors and emerging niche sustainable energy technology sectors. The results suggest that the performance of the methodology exceed that of alternative cluster identification methods, although there is some variation in performance between different sectors. This demonstrates that the methodology provides researchers, practitioners and policy makers with a useful tool to gain insight into the spatial distribution of sectoral innovation activity at a global scale and sub-national regional level and to monitor changes over time, thereby supplementing more readily available global statistical data which is available at the national level.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Bin Wang ◽  
Zhicheng Shi ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01924-6


2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.


Sign in / Sign up

Export Citation Format

Share Document