Large-Scale Solar Magnetic Fields Observed with the Infrared Spectro-Polarimeter IRmag at the National Astronomical Observatory of Japan: Comparison of Measurements Made in Different Spectral Lines and Observatories

Solar Physics ◽  
2020 ◽  
Vol 295 (4) ◽  
Author(s):  
M. L. Demidov ◽  
Y. Hanaoka ◽  
T. Sakurai ◽  
X. F. Wang

2000 ◽  
Vol 179 ◽  
pp. 209-212
Author(s):  
M. L. Demidov

AbstractA comparison is made of observational data on the mean magnetic field of the Sun from several observatories (a selection of published information and new measurements). Results of correlation and regression analyses of observations of background magnetic fields at the STOP telescope of the Sayan solar observatory in different spectral lines are also presented. Results obtained furnish an opportunity to obtain more unbiased information about large-scale magnetic fields of the Sun and, in particular, about manifestations of strong (kilogauss) magnetic fields in them.



2008 ◽  
Vol 4 (S259) ◽  
pp. 231-232
Author(s):  
Mikhail L. Demidov

AbstractComparison of magnetic fields measurements made in different spectral lines and observatories is an important tool for diagnostics of magnetohydrodynamic conditions in the solar atmosphere. But there is a deficit of information about the dependence of results on detailed position on the solar disk, spatial resolution and time. In this study these issues are discussed in application to the solar large-scale and Sun-as-a-star magnetic fields observations.





2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.







1965 ◽  
Vol 141 ◽  
pp. 1502 ◽  
Author(s):  
V. Bumba ◽  
Robert Howard


1970 ◽  
Vol 1 (8) ◽  
pp. 363-364 ◽  
Author(s):  
R. G. Giovanelli

It has long been known that Fraunhofer lines show variations in intensity from place to place over the Sun’s surface, these being particularly noticeable in spectroheliograms obtained in the strong chromospheric lines. An early account of the weaker Unes was given by d’Azam-buja. McMath, Mohler, Pierce and Goldberg attributed intensity increases in (or decreases in depth of) metallic spectral lines to local temperature increases. Sheeley used high-resolution spectra to study these line weakenings further, finding them where, and only where, strong non-spot magnetic fields occurred. He also reported that in many cases the continuum in such regions was of reduced intensity, suggesting that fields often occur in the dark lanes and pores in the granulation. Spectroheliograms obtained in the cores of the weakened lines (e.g., Fel 6302.5Å) by Chapman and Sheeley showed that the bright network which these weakenings form appears as a sequence of sharp, bright points in the cores of the fainter lines and the wings of stronger lines but is more diffuse in the cores of stronger lines. They found the bright network in Zeeman-insensitive Unes (e.g., 5123.7A) also, indicating that it is due, at least in part, to variations in physical conditions. Lines of low ionization and excitation are weakened more than those of high ionization and excitation, and they attributed this to a temperature increase by 100-200 °K in the region of formation of the line cores ; a similar increase of 250 °K was found by Harvey and Livingston.



Sign in / Sign up

Export Citation Format

Share Document