scholarly journals Fracture and Fatigue Analysis for a Cracked Carabiner Using 3D Finite Element Simulations

2015 ◽  
Vol 47 (6) ◽  
pp. 890-902 ◽  
Author(s):  
M. R. M. Aliha ◽  
A Bahmani ◽  
S. Akhondi
2015 ◽  
Vol 94 ◽  
pp. 04029
Author(s):  
Joško Ožbolt ◽  
Barış İrhan ◽  
Daniela Ruta

2017 ◽  
Vol 8 (5) ◽  
pp. 506-515 ◽  
Author(s):  
Raviraj M.S. ◽  
Sharanaprabhu C.M. ◽  
Mohankumar G.C.

Purpose The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element simulations. Design/methodology/approach CT specimens of different compositions of Al6061-TiC composites (3wt%, 5wt% and 7wt% TiC) with variable crack length to width (a/W=0.3-0.6) ratios are machined from as-cast composite block. After fatigue pre-cracking the specimens to a required crack length, experimental load vs crack mouth opening displacement data are plotted to calculate the KC value. Elastic 3D finite element simulations have been conducted for CT specimens of various compositions and a/W ratios to compute KC. The experimental results indicate that the magnitude of KC depends on a/W ratios, and significantly decreases with increase in a/W ratios of the specimen. Findings From 3D finite element simulation, the KC results at the centre of CT specimens for various Al6061-TiC composites and a/W ratios show satisfactory agreement with experimental results compared to the surface. Originality/value The research work contained in this manuscript was conducted during 2015-2016. It is original work except where due reference is made. The authors confirm that the research in their work is original, and that all the data given in the article are real and authentic. If necessary, the paper can be recalled, and errors corrected.


2014 ◽  
Vol 939 ◽  
pp. 39-46 ◽  
Author(s):  
Hong Qian Xue ◽  
Qian Tao ◽  
Emin Bayraktar

The aim of this study is to examine the effect of the clearance and interference-fit on the fatigue life of composite lap joints in double shear, 3D finite element simulations have been performed to obtain stress (or strain) distributions around the hole due to interference fit using FEM package, Non-linear contact analyses are performed to examine the effects of the clearance and interference for titanium and composite lap joint. Fatigue tests were conducted for the titanium and composite lap joints with clearance fit and interference fit with 0.5, 1, and 1.5% nominal interference fit levels at different cyclic loads. The results shows that interference fit increases fatigue life compared to clearance fit specimens, the titanium and composite lap joint with 1% interference fit level has the better fatigue life.


Sign in / Sign up

Export Citation Format

Share Document